@y core oy

ERE RN UL S L ARTE AL LA L

AD-A189 965

DOT/FAA/CT-86/27

FAA Technical Center
Atlantic City Airport,
New Jersey 08405

P — .

PISTRISV; s AT
Apj:ioved f.,0 pullic v !

\ Dh*:i?m.t'\.« n Jl:f":- -

16 FALE Ccopy @

SOFTWARE DEPENDABILITY
ASSESSMENT METHODS

Shirley A. Prater
E11is F. Hitt
Donald Eldredge

BATTELLE :

Columbus Division EDTIC

505 King Avenue

Columbus, Ohio 43201 LECTE
JAN 1 5 188

oisl:!

November 1986

Final Report

This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161.

Q

US. Deparmment Ot WoNspONGnON
Federai Aviation Administration

PN Sl Yo

r S

R A AN A P

e T X P PO SN SR~ T E S P = P SRS SO LG & K AP gl

PR IR B YA PO

> o _m———a _m

WL e ddite s B B

|
A

£

A

\

]

%

&

it

4

LXER

Yy

L

LA

b

0 1.8
f.-‘».’f:{af&' ;

s

A
St 2 x
L AA '.A..'\‘L“

"
.

4

- 4 -
4 ﬁ;l;!}{ff‘ ’

P e d
L ananT Tt

hr'i

TR]

R

2. Government Accestion No.

1. Regort No.
DOT/FAA/CT~86/27

3. Recipient’s Catalog No,

4. Title and Sudtitle

SOFTWARE DEPENDARILITY ASSESSMENT METHODS

6. Regort Dete
November 1986

8. Pertorming Organization Code

1. Author(s)

Shirley A. Prater, Ellis F. Hitt, & Donald Eldredge

8. Pertorming Organization Report No.
DOT/FAA/CT-86/27

9. Puriorming Organization Name and Address
Battelle

Columbus Division
505 King Avenue

Columbus, Ohio 43201

10. Work Unit Ne.

11, Contract or Grant No.
NAS2-11853

13. Type of Report and Pariod Coverad

12. Seomor: Name :
U.S. ﬂESQFEmentmgf‘%?%nsportation Contractor Report
deral Aviation Administrati . Sponsoring Agency
ggcgnical Center ation " ™ Code
ntic city Airport, NJ 08405
1S. Supplemen

Notes
Point g? Contact: W. E. Larsen/MS:210-2
Ames Research Center

Moffett Field, CA 94035
16. Adstract -

development.
reliability data base is also discussed. , .

4 o1

The purpose of this document is to identify various software reliability
models, define the interface between a software reliability model with

a fault tolerant system reliability model, and provide a software depend-
ability model. (capable of evaluating availability, reliability, and safety)
that can predict the reliability of software prior to and throughout its
The software reliability data and development of a software

P

12, Kay Worth (Suggested by Authoris))

. Software reliability, safety,
availability, dependability, fault
tolerance, N-version software, recovery
block, software reliability data basg &« -—~—.

-3

18. Dutnibution Statement

Unlimited
Subject Categorv 3R

19. Secunity Qlamsil. (of tha report) 20. Secunty Clasut. (of tivs pege)

L___Unclassified Unclassified

21. No. of Pagnn 22. Prce’

*For sale by the National Technicel Information Servica, Springtield, Virginia 22161

~~~~~~




PREFACE

The dependability property of a computer system allows reliance
to be justifiably placed on the service it delivers, which is its behavior
as perceived by its users [AVLA86]. This concept naturally encompasses
the notions of relfability, availability, and safety.

The purpose of dependability is the design, implementation,
and use of computer systems where faults are natural, foreseeable, and
tolerable [TOUL76].

Dr. John P. J. Kelly

fn N
o) ;
-

S rrh d. %]

s

L L s e R LA NAND WS RSN A A W, e s 2 I AN NS YV PRLL LA F.’l‘-:s"-.‘_\?_'l.'.b‘?}'



M IO AN N N A ATV  NIRANA SR A MR DA T E AN R AR AW, % merw = = e oo oo

TABLE OF CONTENTS

TECHNICAL REPORT ON SOFTWARE DEPENDABILITY
ASSESSMENT METHODS . . . « « ¢ ¢ ¢ ¢ o o o o

1.0 INTRODUCTION. . . . « « ¢ ¢ v v v o ¢ o

Page

2.0 BACKGROUND. . . . . . G e e e e e e e S €3 |
3.0 SUMMARY . . . . ... e e e e e e e e e e e e e 1-2
TECHNICAL REPORT ON REVIEW OF PREVIQUS STUDIES OF

SOFTWARE RELIABILITY MODELS. . . . . . . . « ¢ v v v v v v o W 2-1
1.0 INTRODUCTION. . . . o v v v v v v v v v o N 23 !

2.0 GENERALIZED IMPERFECT DEBUGGING MODEL . . .

2.1 Underlying Assumptions . . . . . . . . . . . . . .« 2-5

2.2 Key Features . . . . ¢ v v ¢ 4 o o ¢ 0 o

2.3 Study Resuits. . . ¢« ¢« v ¢ ¢ ¢ o 4 o
3.0 BUG-PROPORTIONAL MODEL. . . . . . . . ..
3.1 Underlying Assumptions . . . . . . .
3.2 Key Features . . . . . .. e e s
3.3 Study Results. . . . . . « . ¢« + + &
4.0 GEOMETRIC POISSON MODEL . . . . . . . ..

4.1 Underlying Assumptions . . . . . . . .

4.2 Key Features . . . .« « ¢ ¢« s+ ¢ o o &

4.3 Study Results. . . . . . . . ¢ ¢ ..

e e e 0. 2-6

N 2
....... 2-6
R
...... . 2.7
e e e e s 2-7

« o & & s e 02-8

5.0 SCHNEIDEWIND NON-HOMOGENEQUS POISSON MODEL. . . . .. 29
5.1 Underlying Assumptions . . . « « « v ¢ o v ¢« ¢« « o « 2=9
5.2 Key Features . . . . . . ¢« ¢ v 4 o ¢ . s 4 . 2-9
5.3 Study Results. . . . . . . ¢« v v e i v o o v o . . 2=10

-----
------

q
r'd

2,

FAATL AN

."
A

BB MYXXXAXE NIRIPAA A" 1= XY XTI T, =)

s

R LWy U P L RS R

aca~alil "9 P PSS

P . e e



1
:
;
i
:
i
z
i
;
;
!

SYRRAPRRICOUR S ¥ R A ND SRR ARRARS RUCTRESE CANOPOR SORSREL AR L AL

- AT
ERC I TSR N

-yt

TABLE OF CONTENTS (Continued)

Page
6.0 JELINSKI-MORANDA DE-EUTROPHICATION MODEL. . . . . . . .. 2-10
6.1 Underlying Assumptions . . . . . . . . « . . . .. . 2-10
6.2 Key Features . . . . + « « « + & 22 8
6.3 Study Results. . ¢ ¢ ¢ ¢ v o o o ¢ o s o o s o . o 211
7.0 EXTENDED JELINSKI-MORANDA MODEL . . . . . . . . . . .. . 2-12
7.1 Underlying Assumptions . . . . . . . « . ¢+ ¢ ¢« o .. 2-12
7.2 Key Features . . . . . v v v v v v v e v 0ot e e e 2-12
7.3 Study Results. . . . .+ v v v v v v o o v v v 0 2-13
8.0 GEUMETRIC DE-EUTROPHICATION MODEL . . . . . . . . . . .. 2-13
8.1 Underlying Assumptions . . . . . . . . . .+« . .. 2-13
8.2 Key Features . . . v ¢ ¢ v ¢ o o ¢ o o o o v o o o 2-14
8.3 Study Results. . . . . . .. .« ... e e e e e e 2-14
9.0 MODIFIED GEOMEYRIC DE-EUTROPHICATION MODEL. . . . . . . . 2-15
9.1 Underlying Assumptions . . . . . . e e e e e e 2-15
9.2 Key Features . . . . « v v ¢ o ¢ o o o o o s e ¢« o+ . 215
9.3 Study Results. . . . v ¢ v v v v 0 v o v o o 00 2-16
10.0 SHOOMAN EXPONENTIAL MODEL. . . . . « . « ¢ ¢ v o ¢ v v 2-16
10.1 Underlying Assumptions. . . . . . . . . . . e v o . 2=16
10.2 Key Features. . . . « v « ¢ ¢ ¢« ¢« ¢ 0 o v 0 0 0. 2-1¢€
10.3 Study Recults . . . . . . . « . C e e e e e e e e 2-17
11.0 BIBLIOGRAPHY ., . . . . . .. e e e e s o 6 o 4 a4 2-18
TECHNICAL REPORT ON DEFINITION OF THE FAULT TOLERANT
SYSTEM RELIABILITY MODEL INTERFACES WITH THE SOFTHARE
RELIABILITY MODEL. . . . . . . . P 2 |
it

o W

)

NN S

cet Y
‘.%JSA

’,).ﬁ..:'..\.‘

YRR

A a i

SN



P T O T VA S

TABLE OF CONTENTS (Continued)

Page
1.0 INTRODUCTION. . & &« ¢ v v o v o o o o o s o o o o o o o s 3-1
1.1 Background . . . . . e e e e e e e e e e e e e 3-1
1.2 Objectives of the esearch . . . . « « « ¢« ¢« o « ¢ o 3-1
2.0 CHARACTERISTICS OF THE SOFTWARE RELIABILITY MODEL
AND THE FAULT TOLERANT SYSTEM RELIABILITY MODEL . . . . . 3-2
2.1 Software Reliability Model Qutputs . . . . . . . . . 3=2
2.2 Fault Tolerant System Reliability Models . . . . . . 3-2
2.2.1 CARSRA INPUES . . &« « « v 4 v o o v o o o o s 3-3
2.2.2 CARE IIl Inputs . . . . . ¢« « o« ¢ & e « . . 3=4
2.2.3 NVS Inputs. . . ¢« « ¢« ¢ ¢ v ¢ o o P 1
3.0 INTERFACE DEFINITION. . . . . « ¢ ¢ v ¢t v o o o o o o o 3-6
3.1 Interface Definition with CARSRA . . . . . . . . .. 3-7
3.2 Interface Definition with CARE III . . . . . . . .. 3-7
3.3 Interface Definition with NVS. . . . . . . . . . . . 3-7
4.0 CONCLUSION. . . . ¢ « v v v ¢ v o o e e s e e e e e 3-18
5.0 BIBLIOGRAPHY. . . & v v ¢ e v v o o v e v v o o o o s 3-19
TECHNICAL REPORT ON FORMULATION OF THE SOFTWARE
RELIABILITY MODEL. . . + & v ¢ v ¢ o o ¢ o o o s o o o o« o o s 4-1
1.0 INTRODUCTION. . . . . . . . . B 2
2.0 SOFTWARE CHARACTERISTICS. . . . . . . .. e e e e e 4-1
2.1 Single Version Software. . . . « « « « « ¢ o 4 o 4 . 4-1
2.2 NeVersion Software . . . .« « « « ¢ o + o s o s s o e 4-2
2.3 Decision Algorithm . . . . . . « + « .« « . Y-
2.4 Recovery Block . . . . . . S X
2.4.1 Forward Recovery Block. . . . + ¢« « « ¢« ¢ « & 4-3
2.4.2 Backward Recovery Block . « . « « « « ¢ « . & 4-3

144




3.0

4.0

5.0
6.0

TABLE OF CONTENTS (Continued)

Page
2.5 Acceptance Test. . . . . ..., e e e e e e e e e 4-4
2.6 Rollback . . . . ... ... ... Y 2|
2.7 Roll=Forward . . . . . . .. . .. ... .... .. 8-4
SOFTWARE INTERFACES . . . . . . . . v v v v v v v v e 4-5
3.1 Inputs . . . .. .. e e . e
3.2 Qutputs. . . .. ... e e e . . . 4-5
3.3 Communications . . . . . . . ¢ ¢ v v v v v e .. 4-5
SOFTWARE FUNCTIONS. . . . . . . . . . .. .. .. . . 4-6
4.1 Menu Selection . . . . . .. . . ... 4-6
4.1.1 Placement Requirements. . . . . . . . . . 4-8
4.2 Federal Aviation Administration (FAA)
Function Criticality Categories. . . . . . 0 . .« 4-10
4.3 Function Block Reldability . . . . . .. .. .. .. 4-11
4.3.1 Detailed Function Blocks. . . . . . . . ... 4-12
4.3.2 Function Block States . . . . . . v e e 4-12
4.4 Software Reliability DataBase . . . .. . ... . o 84-17
4,5 System Reliability . . . .. . .. e e e e e e e 4-17
4.5.1 Simple, High Level Model Example. . . . . . . 4-19
4.5.2 Complex, High Level Model Example . . . . . . 4-21
4.5.3 Simple, Detailed Level Model Example. ... . . 4-24
4.6 Safety . ... ... B e e . 4-26
4.7 Availability . . . . . ¢« ¢« v v v 0. ... 8227
TIMING CONSTRAINTS. . . . . . .« « o v v v v v . . w . 4-28
ACCURACY CONSTRAINTS. . . . . . « . . v v v v .. . . 4-28
6.1 Accuracy . G h e e e e e e e e e ... 4-29

N wrtw W W RS P W T e -

vo .

“~%

PataT NS S A LR

22 PO M

P, T,

R R RN

yASN



TABLE OF CONTENTS (Continued)

Page
6.1.1 Accuracy of the Hybrid N-Version Software . . 4-30

6.1.2 Accuracy of the Recovery Block. . . . . . . . 430

6.1.3 Accuracy Example for the Software
Relfability Model . . . . .« o ¢ v « ¢« o« o 431

7.0 RESPONSE TO UNDESIRED EVENYS. . . . . . . « « o & v oeo. . 4=32
8.0 ASSUMPTIONS . . . . . . . K
9.0 REFERENCES. . + ¢ + v v v o o o o o o o s ot s o oo s+ 435
APPENDIX 1. N-VERSION SOFTWARE CALCULATIONS . . . . . . . . 437
APPENDIX I1.  RECOVERY BLOCK CALCULATIONS . . . . . . . . . . 483
APPENDIX 11I. FEEDBACK LOOP CALCULATIONS. . . . . . . . . . . 4-64
APPENDIX IV.  FEED-FOURWARD CALCULATIONS . . . . . . . . . . . 4-68

APPENDIX V. ANALYSIS OF SCOTT'S RECOVERY BLOCK
RELIABILITY MODEL e e & & s & s 8 o & s & » a "70

APPENDIX VI.  ANALYSIS OF SCOTT'S N-VERSION
PROGRAMMING RELIABILITY MODEL . . . . . . . . . 4-82

TECHNICAL REPORT ON SOFTWARE RELIABILITY DATA
AND DATABASE . . . .« ¢ v v o ¢ ¢ o o o o o s o e v ae e . 5-1

1.0 INTRODUCTION. . . . . . « . . . Ve e s e e e e e e oo 51
2.0 BACKGROUND. . . . . B 2
3.0 DATABASE PROGRAM AND SOFTWARE RELIABILITY DATA. . . .. . §-2
4.0 REFERENCES. . . . . . . .

F-

Y

RN 5

g .‘ h‘ c.' L

NI IIEN® SIS I N SSN AN IO

- - e cats o



13

SIMITIATAI T

J.

r

iiJ

WEEE _SEOPIIN |

v e
.l ard

ST

e

S e S A S

(PR o o P

Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

W N e
. . .

(-] [+ ] ~ o (3 4]
L) L] . L] .

10.
11.

12.

14.
15.
16.
17.

18.
19,

LIST OF FIGURES

Page
Interface Definition for the CARSRA and
CARE III Models. . . « v v v v ¢ v v v v e v v s . 3-9
General Format for N-Version Software. . . . . . . 4-7

N-Version Software with Acceptance Tests . . . . . 4-7

N-Version Software in Which Only x Versions
are Used at a Time . . . . . . . .. e e e e e e 4-7

N-Version Software in Which the Qutputs are

Subjected to an Acceptance Test if the

Decision Algorithm Fails . . . . . . . .. e« v . . 4-8
General Format of a Backward Recovery Block: . . . 4-9

General Format of a Forward Recovery Block . . . . 4-9

Alternative Format for a Forward Recovery Block. . 4-10
Simple Block Diagram Example . . . . . . . . . . . 4-13
Detailed Diagram for the Single Version

Software Function Block or the Decision

Algorithm Functfon Block . . . . . . . . . . . .. 4-13
Complex, High Level Model Example. . . . . . o .. 8-22
Equivalent Diagram Indicating the Structure

Icons to be Used in the Detailed Diagram for

a Single Version Software Function Block . . . . . 4-25
Basic Feedback Loop. . . . . . e e e e e e e e 4-64
Basic Feedback Loop Equivalent . . . . . . .. . . 4-64

8351C FQEd'FOPWﬁrd Pﬂth. I T T S S T S S S S T S 4"68

Basic Feed-Forward Path Equivalent . . . . . . . . 4-68
Basic Recovery Block . . . . . . . . . . « o . .. 4-71
Special Case Recovery Block with Only

One Alternate. . . . . . . « v « v v 0 v o0 4-71
Basic N-Version Software . . . . . .. . ... .. 4-82
Basic N-Version Software Equivalent. . . . . . . . 4-83

vi

RN PR A A M RAS SRS 55N T BAES

. .
“_ 8,

—

AL 2]

o

TR LA C LG LV P P, 0,0,



Table 1.
Table 2.
Table 1.
Table 2.

Table 3.
Table 4.

Table §.
Table 6.

Table 1.

Table 2.

Table 3.
Table 4.

Table §.

Table 6.

Teble 7.

Table 8.

LIST OF TABLES

Breakdown of Technical Papers Reviewed. . . .
Reviewed Software Rel{iahility Models. . . . . . .
Breakdowa of the CARSRA Imputs. . . . . . . ..

Relationship of the CARSRA Inputs to the
Software Reliability Model Qutputs. . . . .

Breakdown of the CARE IIT Inputs. . . . . .

Relationship of the CARE IIl Inputs to the
Software Reliability Model Qutputs. . . . .

Breakdown of the NVS Inputs . . . . . . ..

Relationship of the NVS Inputs to the
Software Reliabflity Model Qutputs. . . . .

Correlation of Faults with the Detailed
Portions of the Single Version Software
Function Block. . . . . « « v v v ¢ v & 4

Correlation of Faults with the Detailed
Portions of the Decision Algorithm

Function Block. . « v ¢ & ¢ & & ¢ ¢ o ¢ o o « o

Truth Table of Function Block States. . . .

Accuracy Values for the Simple Block
Diagram Example . . . . . . . « . « . « . .

Reliability Values for the Software
Components in the Figure that Represents

the General Format for N-Version Software . .

Reliability Values for the Software
Components in the Figure that Represents
N-Version Software with Acceptance Tests. .

Reliability Values for the Software
Components in the Figure that Represents
N-Version Software in Which Only x Versions
are Used at a Time. . . . . C e e e e

Reliability Values for the Software
Components in the Figure that Rapresents
the N-Version Software in Which the Qutputs
are Subjected to an Acceptance Test if the
Decision Algorithm Fafls. . . . . . . . . .

vid

Page

. 2=2

2-3

. 3-8

3-10
3-12

3-14
3-16

. 317

4-14

. 4-15
. 4-16

. 4=31

4-37

4-4]

. 4-44

. . 4-50



Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 1.

Table 2.
Table 3.

LIST OF TABLES (Continued)

Reliability Values far the Software
Components in the Figure that Represents

the General Format of a Backward Recovery
Black

Reliability Values for the Software
Components in the Figure that Represents

the General Format of a Forward Recovery
Block . . . . .

o o s 3 s & e ¢ s s

Accuracy Effects on This Example When Less
Than n Alternates are Actually Used

Reliability Values for the Software
Components in the Figure that Represents

a Variation of the Forward Recovery Block . . .

Comparison of Reliability values When Less
Than n Alternates are Actually Used

Input Data Used by Various Software
Reliability Models

Possible Input to the Database Program

Pcssible lnput and Qutput for the Database
Program . . . . . .. .. ..

viid

ccccc

--------------

. & 8 a s s e

‘
AP
JO O N

o - - m—

.- -

3 g AN

a -,
P e ol

AN

o P
v

LR

XA

T I T RN )
"."!’A.I

1



I-1

TECHNICAL REPORT

bl S

an

SOFTWARE DEPENDABILITY ASSESSMENT METHODS

1.0 INTRODUCTION

The increasing application and criticality of digitally implemented ;:'
flight control functions dictates a nsed for highly dependable software, gf
A variety of methods for creating reliable software have been developed (e.g., f:
software engineering, higher order languages, testing and debugging procedures). !:g
These methods do not inherently provide a measure of reliability imprcvement “
obtained using the methods. Methods of assessin§ the relfability a:a auwvenc- ;ﬂj
ability of software are needed. This effort was originally entit,ed "sofiware ;?1
reliability assessment methods" but as the work progressed, Battelle and &ﬂg
our consultant, Dr. John P. J. Kelly, determined that systems which provide ﬁ&j
functions critical to the safe transportation of passengers must be more ibi
than reliable, they must also he dependable. As stated in the preface written ?a

by Dr. Kelly, the concept of dependability encompasses the notions of reliability,
availability, and safety.

The overall objective of this research was to investigate methods
of assessing the reliability of digtial avionics software developed using
primarily higher order languages.

2.0 BACKGROUND

Many software reljability models have been developed which predict
the relfability of software based on various fnput parameters. That work
was sponsored by the USAF Rome Air Development Center (RADC) and NASA's Ames
and Langley Research Centers. Many of these studies attempted to analy-e
an existing data base to derive a prediction methodology. Many of these

4. ‘¢
]

.I
N
N
N
~
L]
;
'l

)
13
3
B
1
+



12

data basas were files of historicai significance, and were not real-time
airborne software systems developed using higher order languages. Consequently,
many researchers have found the popular software reliability models are invalid.
Recent work involved carfully designed and controlled software development
experiments using a limited number of programmers programming a limited number
of problems. That work, in turn, has been criticized as not representative

of real-time digital avionics software.
3.0 SUMMARY

This report is in five sections. The following four sections present:

(1) a summary of the results of previous studies of software
reliability models applicable to real-time software

—
[N
~—

a definition of the software dependability model interfaces
with fault tolerant system reliability models

(3) formulation of a software dependability model
(4) a definition of software data to be collected by the avionics

system developer for storage in the software dependability
data base.

s s s PBIPINNIL BRASS

TN 3. 5% "y WL s 8 3,2,7

a®a"nTy

-1 it A B A B o B i | I S N4

am e e W W o W



2-1
TECHNICAL REPORT
on

REVIEW OF PREVIQUS STUDIES OF
SOFTWARE RELIABILITY MODELS

1.0 INTRODUCTION

Several studies of software reliability models have been reviewed.
In addition to those models covered in the "Comparative Analysis of Fault
Tolerant Software Design Techniques", prepared by Battelle Columbus Division
on February 15, 1984, other models have been reviewed through the use of
published technical papers and a software engineering textbook.(1) The
technical papers are listed in Table 1 and divided into the following cate-
gories: "For Information Only", "Discusses Reliability Modeling Applicable
to Real-Time Scftware”, and "Discusses Reliability Modeling Not Applicable
to Real-Time Software". Table 2 gives the names of the reliability models
and inyicates whether or not they are applicable to real-time software.

Only the software reliability models which are applicable to real-time software

will be discussed in further detail.

The following software reliability models have the characteristic
of being applicable to real-time software. The criteria used to determine
real-time applicability was:

(a) The model is not extremely difficult to solve numerically.
Hence, only a reasonable amount of computations is required.

(b) The model must take into account the test time.

(1) Martin L. Shooman

SOFTWARE ENGINEERING Desigqn/Reliability/Management,
McGraw=Hi ook Company, New York, 1983.

R 2.5

R T X FEEEANRT B

f m am e e e & W oGRS s v



T R

ARRAKNK PRI XA S SRS P A G R AR Y

PhLRLLLY

vk b

Wt (] LN
R ARV

[JR I I I
LRI N

¥
»

Ve LI ] .
840 ” 2

i =-S~

2-2
v »
DiscursasiOscmsses’
For a‘“ﬂbl"‘q‘k\bml ht.ﬂ‘
Lrvformatee Modcuva N\a&ttmg
Title Auther (s) Biblicgraphical Information ::Pamw- Apphcatn
Ol Fima Real-
Softmore |g f Tty are :
Software Relionility:| marein L. | EEE Trangagtions On Relighili .
A Rigtorical &rw. Smooman Volurt R-233, Number 4, April X Fy
‘Q\Q .QQ‘QEQ ‘6‘55‘
&ritu&? for :c&vlvan ;"::"g 5’;"""‘% w
eLigDility Moos onn . Musa, NGiLrirg, VYelurme SE-10, Numowr|
Cemparisons Kahive Sumelay TRCED 100, 0. 6074000,
l‘-\.w [T M.a‘we e SELE Tronsactions On Relan: litu,
vhewere Retlabiliey - -
el e b ik I ;
“;\xi@?‘d S:ﬂm TEEE Trarmagtons On Sofewore
WL PR . Enainiars voi €-o, Number & :
Bev Lituewsed ,13__3‘ . “-me N . x
Are Thay end “z.%? epTemBis 1900, pp. ¥R9- 500, .
’ . AL T, - On ighi i Yoluma .
Madeis for Foilure [R-A. Svans l.. an: a4 —ra o .
A Qmit&omﬂt‘ ’FL_ dnfih'q Tronsace: n Religbility, Veiwny
m’m.c‘“?‘:' Y | Jonn Yaun R4, Numper 1, Aprit 1985, Pp. 3Beu3, -
The Lirsar Seftware “ar sin S Ir .l <) R
RaLability Measl and Trachtenbey |Yelumw R-34, Numoer L, Agril 1985, 3 x .
luaiferm *esng_ | 'y 8
lsrsiu\ Raliability  [ank A Tilman, | To. X.0n3 O Reliab: 11Ky, Veluwna .
and Availebility Way Kusy Cobolbang, RoFi Numonr +, Outecar 1885, pp. 363° x by
orvd Oeris Leyd buan' b
: 1'\:. ""“‘"&2*":? of |Jann mﬁw, i'“e *'%i“twﬂs On h‘ii‘m‘, olure, D
Labll S L3 . . N
" ':Ga inakes .'M:r‘;wh s.'r;‘..:;' %, Numoar uly 9E%, pp. God-6oL 2 x
Saveroge —
a“ium:_nvq of ‘:1: . Trangoctiong On e
tuison on Arolgs . faginitring, Yolume SE-G, Mumber &,
of Compating Seitmart |Bav Littiewood | g o0l "1960, pp. $01- 805 = »
- 4 i~ SWor
Tohn D. Musa |€Enginuring, Veiums SE-1, Numoer 3, x
(4 - r.
dxecnastic “Wrgﬂﬂ;“ ZEEt Transactians On Rgiability. :
N Moaal fer .
/ ol i Compute Bev Littawosd {Yeluwwu R-30, Number 4%, October M8 .
".:;:Lﬂlmuﬂ n::‘w:n pp- 3i13=320, » n e
[Osfrans '
S-v"twaac ?::‘.:22& G. Moch ZELE Tranggcetiong On Reliability, ’
o en Y v
N\vﬁﬂg:c- \ Fi\kering ond | |Velume R-33, Numbar 4, Ottebes x » 1
P.J.C. Spresy 11983, pp. 343-3vS. j
Ciscreta Pronab(utz I.3. Wiagine e jony On Reliability, A
Modalgy with Moditicd ,-nd Yolume R-37, Number 5, Decamber x =
| Reros C.P Taened 1978, pp. 363-866. a
$-Snaged Meliability |Svesru Yameda, | 188S Transactisny On Seigpiuty, .
Growth Medaling fer r’*\'“"“ OhBas | Velurma R-23, Wwmoer S, Decermber x a N
Seftware Grrer nd Shunjt Osaki| 143, pp. 475-470. "
43" .al - .
Biren- Ot and Bug |Wihaim Rremar [ +.orm3 On tu, %
Counting vuwv: ‘u-&. WMIE” &, April 1983, » ; ol
€atumating o LELE Trangactisns On Sofeware
'-«ué\wd' Four ity So;n €. 1 €ngineer 1, Volure SE-10, Numbsr| i
n Cods G‘ Mq. . “’ :“ly ‘ig“‘ Pp' “59- “*. :
A
b

b |

TABLE 1. BREAKDOWN OF TECHNICAL PAPERS REVIEWED

ata

-

n.s W -

\
.}

1

- - L}

) . " PO

T R T LR I TSRV A AR AL P PR Y T EIPEIE VR A DA DA ORI TR D



2-3

Safaware Re L\Io.bxlity Mede!

Apoiicasie

)

Real- Tirmg

Soreware

QQ! F\pp“ucu

-
—

eal-Tima Saer—ware '

L=

Rexgans®
Ele g 1e§f ‘

Ramamosrthy and Bastani’s Trewt Domain Based Madel
Nelgan®s Tmgut Demain Bases Model

He's Lnput Domoin Basid Moadel

Error Seeding Model by Mills

Eiperimental Reluability Data Model

Path Decsrmpositicn Medel by Sheaman

Tmptrfect Debuaging Madel by Geel

Generatized Tmperfecxz Cedugaing Mode!

Stochoassie Model

Bug - Prapertional Model

Pragmatic Softwore Reliability Prediction Modal
by Wall and Fergusan

Generalized Poissom Madel by Weibull (Wagerer)
Geometric Feisson Maedeil by Morande

Goel= Okumats Non-Hemogeneous Poisson Mol
Schneidewird Non-Homogersvus Poiseon Medel
Goel ™Modified Non-Homegerwous Pouson Meodd
Green Model

weibwl {Coutinho) Modal

Corcoran- Weingor tens 2ehna Moda

weiss Modal

Musa Execution Time Fallure Model
Jelinski= Meronda De-EButrophicarion Maded
Externded Jalingki- Moronda Meodel

Geometric De-Eutrophication iModel oy Marando

Modified Geormutric De-Eutrophication Madel

Lafadula Reliobility Growtn Modal

]

E3

X

®

TABLE 2. REVIEWED SOFTWARE RELIABILITY MODELS

7 g TEA

g YY XXX

L)
o J

m—— e w m e w W V_N_ER A AR, K*QA. 'L'l.": C';_ﬂ;;".ﬁ‘."“';’}



= 2-4
‘:-:ff Applicapie Nhet Appgicanuw to 'l
: ) % b go [4
3 Sof<ware P\c.ha.btl\.'c\, Mceodel Real - Trme MM_L—Reauns‘ :
.' Scfeware albig tgle iz |
)
' ) Schick- Welverten Linear Madel x {. i
Cw |
A :' Extendid Scnwe-Wolverton Madel by Lipow " | x ‘
e b
) Modified Schick-Woiverton Modal by Sukert x .
N i '
J Snooman Structurol Medel x x I
- :
) ‘} Sneoman Expomential Madel x l
7 |
< Sheoman- Natarajon Manpower Limited Model x .
e |
J MLquotc's Revised Shooman Moedel x !
= Markor Madel by Sheerman and Trived: x ;
~ ‘
:-‘ Littiewood Desreasing Railure Rate Model (‘&%‘.‘% x
:I D { 1
P Littlewood Markev Model x
i Bayesian Reliability Growen Model b "‘*""I oed x x |x
o ayesian Keliadbiity rowth y Verrall
."‘
3
A

: * Reasons:

S a. The model is extremely difficult to solve numerically. Consequently, the

3 variables must be selected so as to limit the amount of computaiion required.
’ b. The test time is totally ignored.
% c. The technique(s) used is (are) undesirable in software reliability models.

§ d. The model does not adequately address the overall software reliability problem.
; e. There are massive difficulties in estimating the parameters.

J

N f. Some of the assumptions are quite questionable.

IQ

»

B\

4

)

TABLE 2. REVIEWED SOFTWARE RELIABILITY MOCELS (Continued)

PR RV VR

+

AL - - s T e - N - SR IS IR
- - BRI D T T P R L e UL s SRR I T T, L - - o T Sl . Ty T A SV e
DT LI ST v G St T T N LT RV SRPER AN W Y SR A i R St et -, LA S A

_:...l-

W% s2 7] HMOUsSSXSY

|~ MW

~

'I r"'l"

10,00 A HTIIIASY A

R |

e N



(c)

(d)

(e)
(f)

La ARG R AA LA B

2~5

The techniques used in the model must be reascnable. (For
example, the cumulative averaging technique is undesirable
in software relfability models because this technique causes

early data points to be weighted more heavily than late: ones.

Thus, with this technique, even the most erratic error data
will eventually project a "fitted l1ine" as the sample size
becomes sufficiently large).

The model! addresses both the dynamic and static measurements:
(1) Dynamic measurements
e hazard rate, 2(t)
e reliability function, R(t)
e mean time to failure, MTTF
(2) Static measurements
e total number of errors
e total number of remaining errors
The parameters are not diffcult to estimate.

The assumptions are reasonable.

The underlying assumptions, key features, and study results are
summarized below.

2.0 GENERALIZED IMPERFECT DEBUGGING MODEL

2.1 Underlying Assumptions

A1l failures are observable and independent.

The time to remove a failure is considered to be negligible
and is ignored in the model.

Errors are not always corrected when detected and errors may
be spawned when correcting errors.

Testing 1s of uniform tntensity and representative of the
operational environment.

Inputs which exercise the program are randomly selected.

The failure rate at any time is proportional to the current
number of errors remaining in the program.

The failure rate between the (i-1)th failure and the ith failure

is a(ty) = o[N-(i-1)]t=-1,

o A
A

‘A” F)‘) I...’}?f.s-

<,

PROTMORA 423 e

0
a e

v

Rk
a

e P AER SN, W LS



__,u-u—qn_:r:-a-r W RN R T W WS e Em M EE R W R W worews s T SWTE m s miae esw = - =

' b}}}?‘:“}}' t‘:{}x‘h.‘:! J’:‘ '.-“;': n ’-;,‘.' lt‘_..‘\'sl s'n".'-tl':..‘r

R}

e .

YRR YN

!

s
2.

c ew
P
»

"‘.-'.:' .

r
L&

LIPS § ‘3?
'.-';')5’ s‘.‘l}hz LN

Y

.i——-—-—v
S I
»

.. P . N - g
Z- a . N “LY
PEr A A IR AL

e

2.2 Key Features
The faflure rate is of the form
A(t) = o(Nap(i-1))t=-l
with ¢ = a proportionality constant;

N = the total number of errors;
p = the probability of perfect programmer debugging behavior

= = the parameter that controls the shape of the failure rate.

The reliability functions is

R(t) = exp (- ¢ (N':“'l)) t9

and the Mean Time to Failure is

MTTF g_é_ { « } 1~ r(‘}).
(N-p(i-1))

2.3 Study Results

This model cannot determine the effect each bug contributes to
the overall failure rate without continuing to run the program because the
instantaneous fajlure rate will be 2ero when a bug fs found and immediately
removed. The model provides a good fit with data. The parameter estimates
are reasonable for the data sets tested.

3.0 BUG-PROPORTIONAL MODEL

3.1 Underlying Assumptions
a. The number of errors in a program is a constant and decreases
directly as errors are corrected.

b. Software errors are caused by the uncovering of residual bugs
in a program.

el s e aww LB AS

- m om omom ow_



- e e T3 e e I A S R ]

e

2-7

c. The probability that a bug is encountered in the time fnterval,
at, after t successful hours of operation is proportional to
the fractional number of remaining bugs.

d. The fractional number of remaining bugs {s independent of the
operating time.

e, The rate of error correction is constant.

3.2 Key Features
The hazard rate is of the form
z(t) = Kep(t) = K[(ET/IT) = €c(1)]

where K = an arbijtrary constant; and
¢e(T) = the number of remaining bugsi
Er = the total number of errors originally present;
IT = the total number of machine instructions; and
¢c(7) = the number of corrected bugs.

The reliability function is
R(t) = exp {-[Kep(r)]t]} = exp {-K[(ET/IT) - ec(r)]t]

and the Mean Time to Failure is

1

D W S
MITF * Xen(o) B(1-7)

with 8= ELK and = = 20IT,
It Et

where fg = a constant rate of error correction.

3.3 Study Results

The overall behavior of the model is verified. However, the errors
between measurement and prediction had a standard deviation of 24 percent.
When seeking historical data for estimation of reliability parameters, the
examples should closely match the intended application and phase.

— = aas s aameYrers -



2-8
4.0 GEOMETRIC POISSON MODEL

4.1 Underlying Assumptions

a. There is an infinite number of errors.

b. Each fault in the program is independent of the others and
each of them is equally 1ikely to occur.

¢. The errors do not have the same likelihood of detection.

d. During a fixed interval of time, the number of errors detected
follows a Poisson distribution.

e. During each of these periods of time, the detection rate is
constant.

f. Data is available only at discrete intervals.

g. The detection rate in successive time intervals forms a geometric
progression.

h. Each error discovered is immediately removed or no longer counted.

i. No new fault is introduced during a correction time.
4.2 Key Features
The hazard rate during the ith time interval is
z(ty) = aki-1

where t{ = the ith debugging interval;

A = the average number of faults occurring in the first
interval;

K = a proportionality constant, 0 < K < 1.
The reliability function is

R(t) a2 e 'AKit

b g
:a
'
"
N

1%

hARS o
L)

A
a b &

~ Y7
-

8N retey

.J .l- -I':.'.. l- "l ’..



2~9

and the Mean Time to Failure is

WrTE = L,
AK1

4.3 Study Results

This model gives identical results as the Schneidewind Non-Homogeneous

model.

5.0 SCHNEIDEWIND NCN-HOMOGENEOUS POISSON MODEL

5.1 Underlying Assumptions

The number of errors which is detected during a time interval
and the collection of error counts over a series of time intervals
are modelled by a random variable and a stochastic process.

Prior to the selection of a test plan, all errors are equally
likely.

The number of errors detected in each time interval is inde-
pendent of the number detected in another time interval.

Detected error counts in each interval have the same type of
distribution but have different means.

The mean number of detected errors decreases from interval
to interval.

The rate of detection in an interval is proportional to the
number of errors in that interval,

The error process is a non-homogeneous Poisson process with
an exponentially decreasing intensity function.

The error correction rate is proportional to the number of
errors to be corrected.

1 5.2 Key Features

The hazard function is equivalent to the predicted number of errors
for each interval i where

I ——— -4.--4_-).‘.’]'“3_\)_"?-".m’DAy.*’Z.mltt&':” 55.'*.“."."."2"“4'-‘&?"5‘ mﬂ’w



2-10

my = (=/8)[exp (-B(i-1)) - exp (-81)]

with my = the estimated number of errors in interval i;

8 = a model constant; and
* = a mode! constant (error detection rate at time 0).

The weighted squared deviation is

t

S0, 'kﬁl exp (81)[(=/8)[exp (-2i)][exp (8)-1] -Xx4]2.

5.3 Study Results

This model is equivalent to the Geometric De-Eutrophication model.
However, this model offers greater flexibility than the Geometric De-Eutro-
phication model.

The required test data for this mode! consists of the sequence
of the number of errors in each time interval.

6.0 JELINSKI-MORANDA DE-EUTROPHICATION MODEL

6.1 Underlying Assumptions

b.

A program can be decomposed into a number of paths or cases.

The identification of paths will be done at a high enough level
to yield a relatively small number of cases (<1040)

The number of machine language instructions remains relatively
constant. :

Failure is caused by rare combinations of input data and path
traversals, with the time between fatlures governed by an
exponential distribution, yielding a constant hazard.

There is a fixed number of errors in the program.

No new errors are added during the debugging process.

Each error discovered is immediately removed.

Each error has an equal chance of being detected.



2-11
i, The fajlure rate is proportional to the current error content
(number of remaining errors).
j. The program {s not being altered except for error correction.

k. Only one error may occur in a given time debugaing period.
6.2 Key Features
The hazard function is of the form

z(Xj) = ¢ [N-(i-1)]

£
pur®
a4
=
=
L]

the total number of initial errors in the program;
a proportionality constant;

the length of the ith debugging interval (the time between
detection of the (i-1)st and the ith errors); and

the number of errors discovered.

>
- ©
[ ] »

-
"

The reliability function is
R(Xi) = exp [-o(N-n)X4]
and the Mean Time to Failure f{s
MTTF = 1/[¢(N-n)]

where n = the number of errors found to date.
6.3 Study Results

The model provides a good fit with data. The model runs into slight
trouble with its "no new errors" assumption. At the "last" error, the time
between errors shows a sudden sharp increase which is somewhat optimistic.

The larger the data set, the more likely the sudden improvement and the impli-
cation that debugging is complete.

B, [V PPV IIXI L o]

> -
*eta".

- e eemm smeeww 2 W WUMRES_ v,



[

2-12

This model requires a sequence of times between failures in order
to estimate the parameters.

7.0 EXTENDED JELINSKI-MORANDA MODEL

7.1 Underlying Assumptions

There is a fixed number of errors in the program.

No new errors are added during the debugging process.

Each error discovered is immediately removed.

Each error has an equal chance of being detected.

There is a constant failure rate between consecutive errors.
A program can be decomposed into a numbar of paths or cases.

The identification of paths will be done at a high enough level
to yield a relatively small number of cases (<10¢0),

The number of machine language instructions remains relatively
constant.

The failure rate is proportional to the current error content
(number of remaining errovs).

The program is not being altered except for error correction.

More than one error may occur in a given time debugging period.

7.2 Key Features

The hazard function is of the form

z(ty) = o[N-nj_]

where ¢ = a proportionality constant;

N = the total number of initial errors;

niy = the cumulative number of errors found through the ith
time interval; and

the ith debugging interval,

ti

Wil

se%

g LW

LT,

. LN EA

o ol

AL ot nl R SURLS & ~ NPl

v .

LA L IS

M W MMM R A MBS .F L, IER CLCats 4 Al MM 3 S Y

- . .



|
)
'
'
'
)

The reliability function is

R(t) s " Q(N'n’f)t

and the Mean Time to Failure is

MTTF » 1

olN-n4]’
7.3 Study Results

This model requires the number of errors in some uniform time period
to estimate the parameters.

The model provides a good fit with data. The model {s somewhat
inconsistent and less smooth due to its use of actual errors in its hazard
function. Fairly small changes in the data give a significant change in
the model's shape and prediction. At the "last" error, the time between
errors shows a sudden sharp increase which 1s somewhat optimistic.

8.0 GEOMETRIC DE-EUTROPHICATION MODEL
8.1 Underlying Assumptions

a. There is an infinite number of total errors.

b. Each fault in the program is independent of the others and
each of them is equally likely to occur.

¢. The errors do not have the same likelihood of detection.

d. Each error discovered is fmmediately remove&. The time to
correct the detected faults 1s negligible.

e, No new fault is introduced during the correction time.

f. The fatlure rate between successive errors forms a geometric
progression and is constant in the interval between errors.

WA bl == %)

>
-

Vs

X aad &

2 X

NSRRI IUVPY IASRIIwP P, A FPIFIp, JT- 24

o R “.a 3 8.2 % VP -_-7_". .

- e e m M B M



SEIPRL, DRI JINE!

2-14
8.2 Key Features

The hazard function is

Z(xy) = oxi-1

- where Xi = the ith debugging interval;
the initial error detection rate;
a proportionality constant; and

X O

g,;. i = the number of errors discovered after i intervals.
id:‘:\’

% _ The reliability function is

-

:;ﬁ R(Xj) = exp[-DKNX;]

-

_:Q; where n = the total number of errors discovered
2!

| and the Mean Time to Failure is

_ .

‘j MITF = —.

w0 DKn

8.3 Study Results

-

T
LA W h)

e

)
.l

The test data necessary to apply this model is the sequence of
times between errors.

This model gives a reasonable fit with data. It is also fairly
consistent in its results when only part of the data is used. The Geometric
De-Eutrophication model appears to be slightly better than the Jelinski-Moranda
De-Eutrophication model for data.

I
%

"l{‘-\.’t“(lﬂl ’.z‘;r;. "

eVl g2

a:’.a JJ.

et 2 i) MaTata A AN LU'."a"a"a A X ‘e o o o

o3 W EWRBASL T OB T S0 [ P R Ll e o e o

-8 LIPS S ]

-~ ww 2ER



LI |

r

NIRRT TR A i

e e K s i N

AV I

S W S

d e T T

i - ——a

2-15

9.0 MODIFIED GEOMETRIC DE-EUTROPHICATION MODEL

9.1 Underlying Assumptions

a. The program contains an unknown number of errors.

b. Each fault in the program is independent of other faults and
each of them is equally likely to cause & failure during testing.

¢. The number of faults detected in any time interval is independent
of that in any other time interval.

d. The error correction time is negligible. Each error discovered
is immediately removed.

e. No new errors are added during the debugging process.

f. The program is not being altered except for error correction.

9.2 Key Features

The hazard function is of the form
2(t5) = pkMi-1

with D = the fault detection rate;
K = a positive constant less than 1;
Mj-1 = the cumulative number of errors detected; and

M; = the cumulative number of errors found up to the i-th time
interval.

The reliability function is
R(t) = e - DK™t

and the Mean Time to Failure is
MTTF = —L

v pg'n
with n = the total number of time intervals.

P e R SV N T Sl i3, g



2-16

9.3 Study Resu]ts

This model was not verified with any test data.

10.0 SHOOMAN EXPONENTIAL MODEL

10.1 Underlying Assumptions

The number of errors in a program is a constant and decreases
directly as errors are corrected.

The error detection rate (failure rate) is proportional to
the number of remaining errors.

The total number of machine language instructions remains constant.

Operational software errors occur due to the occasional traversing
of a portion of the program in which a software bug is hidden.

Each error has an equal chance of being detected.
Software errors occur ﬁith a probability distribution of

f(t) = aexp (=at)

where t = CPU operating time; and
A = a constant of the hazard function, z(t).

10.2 Key Features

The total number of errors remaining in the program debug time

-

ep(t) = (E/1)-ec(r)

where £ = the total number of errors present at time t = Q;

I = the total number of machine instructions; and

ec(t) = the total number of errors corrected in interval r,

- et a om o el A A R D W S A Sy Ces W W ¥ 1



2-17

The hazard functioﬁ is of the form
z(t) = Cep(1)
with C = a constant of proportionality.
The reliability function is
R(t) = exp {-C[(E/I) - ec(T)]t}
and the Mean Time to Failure is
MTTF = 1/{C[(E/1) - ec(x)]}.
10.3 Study Results

The Shooman exponential model reduces to the Jelinski-Moranda

De-Eutrophication model. This model requires a sequence of times between
failures in order to estimate the parameters.

ATt D CEAL LAY W w&&"’mﬁﬁﬂ.w e .w

FOTIE RS 5 I SRR AT Iie W SRS A S, o S U S T




o o A

-
L

vl 1.
St
FL ]
t—a
}g 2.
b
;' [
oy
=)
HE Y
in
)
) 30
H ]
2
o
)
F 4.
Ea
HEA
2
3: 5.
X
HERY
Do
' 6.
: 1.
A
.
Al
i
}
}
!
Yy
¥ e e e

2-18

11.0 BIBLIOGRAPHY

Chen, Yao, "Time Dependent Software Reliability Mogeling Study”,
North Carolina State University, Raleign, North Carolina, 1982.

Gepnart, L. S., Greenwald, C. M,, Hoffman, M. M., ana Osterfeld,
0. H., "Software Reliability: ODetermination and Prediction”,

University of Dayton, Dayton, Ohio, Report Numper AFFOL-TR~78-77,
June 1978,

Geel, Amrit L., "A Guidepook for Software Reliability Assessment®,
Syracuse University, Syracus2, New York, Report Wumpers
RADC-TR-83-16 and AD-A 39240, August 1983,

Hite, E1lis F., wedb, Jeffrey J., and Bridgman, Michael S.,
"Comparative Analysis of Fault Tolerant Software Design Techniques"”,
Battelle Memorial Institute, Columbus, Ohio (Prepareg Under Contract
Numper NAS1-17412), February 15, 1984,

Littlewood, Bev and Sofer, Ariela, "A Bayesian Modification to the
Jelinsk i-Moranda Software Reliability Growth Model", City
University, London, England, Report Humber NASA-OR-169743, 1983.

Shooman, Martin L.,

SOFTWARE ENGINEERING Design/Reliability/
Management, McGraw~H11T Book Company, New York, 1983.

Sukert, Alan N., "A Software Reliability Modeling Study", Rome Air
Development Center, Griffiss Air Force Base, New York, Report
Numbers RADC-TR-76-247 and AD/A-030-437, August 1976.

LAl e

Y EXL

L XDl ¥

X,

L X

P Y A A nd v Lo d &8 Al YADINOEA L a7 ¥ X

a A e P

P R i a.



3-1
TECHNICAL REPORT
on

DEFINTION OF THE FAULT TOLERANT SYSTEM
RELIABILITY MODEL INTERFACES WITH
THE SOFTWARE RELIABILITY MODEL

1.0 INTRODUCTION

1.1 Background

Interface checks are an attractive form of error detection
(at least as far as a program running on the interface is concerned)
since they are performed automatically and efficiently - often in parallel
with the execution of the requested operation - and cannot be suppressed
by a programmer. However, interface checks can only check for correctness
of use of an interface and cannot check whether any usage corresponds
to that of a correct program. It has been assumed that interface exceptions
and failure exceptions indicated the presence of design faults in the
program and component faults in the interpreter, respectively. If this
was always the case then the implementation of fault tolerance by the
program would be much simplified since there would be a direct relationship
between the type of a fault and a particular exception.

1.2 Objectives of the Research

To define the interface of the software reliability model with
the fault tolerant system reliability model, it is necessary to 100k
at the corresponding outputs and required inputs. It is desired that
the interface definition permit stand alone use of the software reliability
model with the outputs serving as inputs to the fault tolerant system
reliability model or a combined operation of the hardware and software

models of the state space. The outputs and inputs are discussed in detail
below.

\\\\\\\\\\\

e m m—————— e e SR A, Wy



WMEFAF R I MR F s AF AT SRR T N NN R N LWASR VW I-W I W ICE W IAFE ICW I (P W TEF TWOYTR B PR R M WMCIMCTEOIS VM W TR Ymcwrimow Tmamtta o om - e
-

URARAN T RESROIE | AO%

].'
’

il 4050

Al

17

5, TXXRRT NG EYTTE SO AR

TSN L )

1
A

b ".-_‘(lf |

[

i
?

ﬂrli

gaunand,

Yy A

R YN TR A
TN T W ’;.".- FIIIA

e -

3-2

2.0 CHARACTERISTICS OF THE SOFTWARE RELIABILITY MODEL
AND THE FAULT TOLERANT SYSTEM RELIABILITY MODEL

2.1 Software Reliability Model Qutputs

Software relijability models that are applicable to real-time

software address both the dynamic and static measurements. The corresponding
outputs are:

(1) Dynamic measurements
¢ hazard rate, z(t)
e reliability function, R(t)
e mean time to failure, MITF

(2) Static measurements
o total number of errors
¢ total number of remaining errors

2.2 Fault Tolerant System Reliability Models

In accordance with the "Automated Reliability and Failure Effects
Method for Digital Flight Control and Avionic Systems, Volume I: Evaluation”,
this report will focus on the top two models. The evaluation 1ists the
top two models, in order of preference, as CARSRA (Computer Aided Redundant
System Reliability Analysis) and CARE Il (Computer Aided Reliability
Estimation, version II). A different evaluation, sponsored by NASA Langley
Research Center, indicates that the CARE III model is "best suited for
evaluating the reliability of advanced fault-tolerant systems for commercial
air transport.”(l) Therefore, this report will discuss the updated and
improved CARE model: CARE III. In addition, N-Version Software (NVS),
obtained from multi-version programming, will be considered since it
is a primary method for providing software fault tolerance and was not
covered in the above reports.

(1) “gvaluation of Reliability Modeling Tools for Advanced Fault-Tolerant
Systems", AIRLAB INTERFACE, NASA Langley Research Center, Hampton, Virginia,
December 1983, p. 2.



3-3

2.2.1 CARSRA Inputs

The following items comprise the required input data and the
corresponding variable names that are used by the program.

number of non-dependency stages, NIS
number of dependency stages, NDS

assigned state number, NST
dimension of the stage, NDIM

number of modules in the stage, MODN

transition rates, LMDA (NST, K, J) with J=1, 2,...NDIM and
k=1, 2,...(NDIM-1)

transitional readiness time span, AMT, and time increment,
ADT

fajlure probability time span, FPMT, and time increment,.
FPDT

number of dependency modules in the system, NARY

each dependency module, NIND (I) with I=1, 2,...NARY, specified

by NIND and NDEP
number of functional readiness configuration entries, NAV

each configuration is characterized by up to three failed

modules, NA (I, K), with K=1, 2, 3 where the module is indicated
by XXY with XX being the stage number and Y the module number

within the stage

number of stage failure patterns equivalent to system success,

NOSCOF

success configurations, ICOF (I, J) with I=NOSCOF and J=1,
2,...50

accuracy indicator, NACCUR




3-4

2.2.2 CARE III Inputs

The following input data is required to describe the system.
The corresponding variable names are given after the description.

| PRy s BB o

variable which defines if all of the fault handling models
have exponential distributions only, MARKOV

number of fault types to be included in the model, NFTYPS

parameter for transition between the active state (A or
Ag) to the detected state (D), DEL(1)

parameter for transition from the active state A to the
active error (erroneous operation state) Ag, RHO({)

parameter for transition from the error producing state
to the detected state or to a single fault failure, EPS(1i)

indicator variable defining if the DEL parameter is for
an exponential or uniform density, IDELF(i) - disregard
if it is a Markovian model

indicator variable defining if the RHO parameter is for
an exponential or uniform density, IRHOF(i) - disregard
if it is a Markovian model

indicator variable defining if the EPS parameter {is for
an exponential or uniform density, IEPSF(i) - disregard
if it is a Markovian model

probability that a faulty operation will be successfully
masked by the system, C(1)

probability that a module detected as faulty in an active
state A is identified as a permanent fault and isolated
from the system, PA(1)

probability that a module detected as faulty in a benign
state is identified as a permanent fault and isolated from
the system (for intermittent or transient fault), PB(1)

exponential rate (intermittent or transient fault) for
transition from an active state (A or Ag) to a benign state
(B or Bg), ALP(1)

exponential rate (intermittent fault) for transition from
a benign state (B or Bg) to an active state (A or Ag),
BET(1)

RN R B 5 B B QR A B 0, 0,00,

[F W N P Vg ol

=2 e e S vy ¥ W

. w—-u v e "



3-5
flag for outputting the moments of single and double fault
coverage functions, CVPRNT

flag for a plot of the single and double fault coverage
functions, CVPLOT

Y-axis scale for plotting coverage functions, IAXSCV

parameter governing the step doubling rule used in the solution,
DBLDF

coverage function's truncation value, TRUNC
number of stages in the system, NSTGES
number of identical modules in stage number x, N(x)

minimum number of modules needed for stage ISTG to be
operational, M(x)

operational configurations for stage x, NOP (i,x)
option for the output printout, IRLPCD

option for the summary information to be plotted against
time, RLPLOT

axes specification for the summary information plot, IAXSRL
number of fault types that a stage is subject to, NFCATS(x)
fault types specification for stage x, JTYP(Jj,x)

parameter w of the Weibull fault occurrence rate Auw(it)w-l
for fault type j for stage x, OMG(j, x)

parameter A of the Weibull fault occurrence rate for the
fault type j for stage x, RLM(Jj, x)

flight time for which the system is to be assessed, FT
time scale used for the flight time, ITBASE

number of equal steps that the flight time is divided into,
NSTEPS

flag indicating whether or not the system fault tree is
to follow, SYSFLG

flag indicating whether or not a critical pairs fault tree
is provided, CPLFLG

DS

B P LNy Y I WIS P WP EY . A Y 32



RYaaLs  [EPYRREY. ARANNANSS SERWH

&!'{JI!A",{L. &af.fm“lélt)é! lh;' n"-":l lt !"'Aiﬂ'\‘

%

i
a0 }‘-‘.‘-‘. < i

)
2]

céﬁﬂiy Lhlesied ¥

!
ke

&?"&f

v 'L’.«.’J

R

i

' ,
B e

analysis.

3-6
e parameter used to limit the number of terms used in computing
the coverage failure probability, PSTRNC

e parameter used to l1imit the number of fault vectors used
fn computing the probability of system failure due to a
lack of coverage, QPTRNC

(] pa;ameter affecting the computation of the summary information,
K

e fidentification label for the system represented, TITLE
o logic statements to form a single system fault tree
o identification label for the critical pair tree, TITLE

o logic statements for the critical pair tree

2.2.3 NVS Inputs

The following parameters are necessary for the NVS reliability

e number of active versions, n
e error probability of version #i (with qi=1-pi), pj4

e correlation coefficient between #i and #j (with q1’3=1-p1'5),
Pi,J

e maximum number of versions allowed to be faulty at any crosscheck
point, m*

o maximum number of versions allowed to be faulty in common
mode, f*

3.0 INTERFACE DEFINITION

It {s desired that the software reliability model be able to

be used in a stand alone environment or in conjunction with the fault
tolerant system reliability model. Therefore, the interface definition
shall dictate which outputs of the software reliability model must serve

as inputs
this will
and NVS.

to the fault tolerant system relfability model. For clarification,
be done individually for the three models: CARSRA, CARE 11,

- »r s rra [ B

[ S



3-7
3.1 Interface Definition with CARSRA

The required inputs for the CARSRA model are from three different
sources: (1) inputs into the software reliability model; (2) outputs
from the software relfabil{ity model; and (3) inputs only for the fault
tolerant system reliability model. Table 1 shows the distribution of
the various CARSRA inputs between these three categories. The inputs
from the first two categories are transferred from the software reliability
model into the fault tolerant system relfability model at the interface.
Hence, the interface definition for the CARSRA model is shown in
Figure 1. Table 2 shows the relationship between the various outputs
from the software reliability model and the CARSRA inputs (given in the
second column in Table 1).

3.2 Interface Definition with CARE III

Similar to the CARSRA model, the required inputs for the CARE
111 model are from the following three sources: (1) inputs into the
software reliability model; (2) outputs from the software reliability
model; and (3) inputs only for the fault tolerant system reliability

model. The distribution of the CARE III inputs amongst these three categories

is shown in Table 3. Figure 1 remains applicable for defining the interface
of the software reliability model with the fault tolerant system reliability
model. The correspsndence between the software reliability model output
variables and the CARE III input variables (given in the second column

in Table 3) 1s shown in Table 4.

3.3 Interface Definition with NVS

For the NVS model, the required inputs are in the following
two categories: (1) outputs from the software reliability model and
(2) inputs only for the fault tolerant system reliability model.
Table 5 shows the breakdown of the NVS inputs into these categories and
Table 6 gives the relationship of the NVS inputs to the software reliability
model outputs.

=% s

K< l’.&fl -.ﬂ

PSS U EEE SR JANSNI WY

-—. a By D



Lt B GO/ R

SINANI V4S3vd IHL 40 NMOONVIYE

‘1 318vl

Lot ee .

rfrddn s

3-8

AYN °satsiud uogjesnbijuod
S$SauLpeaa (eugliduny jO J3qunu @

dIUN pue gNIN £q
patjLiads “AYYN" "2 ‘I=f YliM
(1)ONIN “3(npow A3uapuad3p yoed e

AYYN <walshs ayy
uL sagnpow L3iuapuadap jo saqunu e

¥NJIYN <403ed1pul Adeuandde o

(c “1)

403§ ‘suotjeanbLjuod ssaions @

J0ISON
¢$532Ins WIISAs 03 juafeatnba
suadjjed aanjrey abeys jo saqunu @

O ‘1) UN ‘uoly
—eanb g juod yoead buirziaaioeaeyd
sa|npow pajLes 40 43qunu @

1044 €jududaduL Wy pue °©1Wdd
sueds awiy A3Lglqeqodd dungiej e

Qv
cjuawaadul awi) pue jWy ‘ueds
WL} SSIULPRAIA [euoLIisuea) @

(T-WION) “°*2 ‘1=M

pue WION" " "‘C ‘1=l

yitM (0 X “1SN) veWl

ssanoy uog|iw aad saunjiey
Ui Xgajew ajed uogjisueay e

Kouapuadap-uou jo saqunu @

<gbeys ayy ut SILnpou jO 43qunu @
WIaGN “3beys 3yl jo vaisuauip @

1SN *4aquau 3beys paubisse o

ssabeys Airuapuadap 0 «3qunu e

NQOW

SON

SIN “sabeis

L3poW A1L(tyet |3y waisAS juesdjo] j|ney

ayy ojut A(uo nduj

13poW A1111qel |3y dsemyjos
ay} wouy IndinQ

{apoy A3L11qRL[3Y 3Jem3}05

ayy oui jnduj

oA E

S SSRNEE i LENNS

wxhj AN )

RN s e ot u‘ﬂ\\ Y Yy .. o .A~ e, S

opm—_ 4 e

~—

LT

" .
Sl ML

-
;o
P

IS4y vl

et e e ey e s
ST L ewe e e



3-9

[3POH
Arttqet 3y
w3ysks
juesajog
Lne4

ST3006 1EI YYD ONV VySHVD 3d4L Y03 NOILINIJIQ JIVIYILNI

13po
A31(1qe8 |3y WAISAS

juesd|og tney
3yy ojug nduj
{euoll1ppy

nding
Leuot1LppY

€ 9 1 sajqe] wouy)
lapoy A3tqiqeL 3y
aaemn1jos 3yj ojul
duj J0 (eA3dLLI3Y

(€ 219e1 pue | ajqe]
ut) [3poW AItiqet|ay

4em} 405 3yl wouay Inding

A3Liiqer 13y

L3P

3.48M] J0S

T 3WNII4

13poy
A1tiiqet |3y
aaemy oS
3Gy ojut nduf
LeUOLILPPY

(€ a(qer pue 1 3lqe}

woay) (3pow AIL(iqet(3y
a4em3405 3ayy ojut induf

Gy trr g

-

AN



3-10

SINJLN0 13U0W ALITIGVITIY JWVML40S 3IHL OL SINANI vySYVD HL 40 JINSNOILVIIY "¢ 318Vl

40JSON °S$S322nS WAISAs
01 jJuaieAinba susdjjed
asngrej abeys jo aaquny

< (X “I) YN ‘uorieanbijuod
yoea burziadjoeseyd
sajnpow patiej ;o J3aquny

10d4 “uswaLdLl
auly pue ©|Wdj ‘ueds
awty A3t(eqeqoad aungeey

1y Csjuaulsdul
awLy pue Wy cueds
WL} SSIULpeILs (euotLsueal

(T-WION) "~

*e¢2 ‘=X pue RIQN"""°2 ‘1=
YItm (X 1SN} VW1
‘sanoy uoL|tw 43d sasn|Ley
Ut Xtdjew 3304 UOLILSUEL]

S40443 Durugewd)y
J0 J3quny |e1o)

$40443 JO
daquny (ejo

4110 *3antey
0f awi] uedy

(1)4 “uog3dunyg
A3111qe} 13y

(¥)z <oey
paezej

sndu] yySYvd

$IUWILNS R I1I0]S

sjudmIANSedy dtweulg

L9PON K31 (1GBL 3y aaem3jos ay3 wody sInding

[ 4

R HILLRats MAiaixsd XBR1Add: AAGYANNNTOIRGTERAERALAdS |

N W M

-

o LEUALRARY R AAANRT ek

F R

RISV WA I LY I R

L~

.
-

R T I

PP UL Y PUFL I PUEC I T LG ERL R RE N GERA R L

1
-
‘e
r
&
I
|
|



Pl _ IS AR Ca XK ERARE oo™V T B E P v W = - = -

3-11

(panutuol) SINALNO 1300W ALITIGYITIY JYVML40S JHL OL SLNNI VySHVd 3HL 40 dIHSNOILVTIIY

"¢ eVl

HAJIVN ¢ 203e31pul Kleanddy

40 a3quny {10}

Jaquny (030}

0) awp) uedy

X
X X X (c 1) 4031
ssuogjesnbyjuod ss3ddnsy
510443 Bujuyendy $40443 jO J11H ‘aaniiey (1)y ‘uopzdoung (1)z ‘aey syndul V4SHV)
A3pLiqe 13y paezey

sjuawainsedy d43103S

sjuawaanseay djweudq

(3P0 A1TL1QeF 190 94EM1J05 oy} wody sIndyng

L .W. .i\q FINE ‘—f_ ‘l\— .‘..u...-\ 11 ml\..m..-\— i ...“d“ -_JJ\J\-mx-d_\_ . SR Badd {...,..—J.i‘ ~he

RTINS R SRV R 5T R S Y




N

3-12

Fala’a'a ' a !l LELNLALRET T s AaCaAal _ LAANYYYwE 1% sw? 8.7 RS 777w d Heeese o722 40 770 77 —

SININI LI1 34v) 3HL 40 NMOQAV3IHE

"€ 379Vl

914SAS
‘MO[[O4 0} SL 334} J|nej wWaysAs Yy}
10U 40 43yjaym Burjedtpuy beyy

SJILSN “0lul papiALp st awy ybeyy
3y 1eyl sdajs (enbd jo adaqunu

TUSXVI €101d uoljewaojut
Asoumuns ay3 404 uoijedtyrdads saxe

10147y ‘2wt jsutebe pajjord aq 03
uctjewsojul Aseumns Yy 40) uogiydo

QId I
<inojuiad ndino ayy 40y uotido

JINNYL “ontea
uopjedsunsy s, uoijduny abeasaod

44144
‘ugLin{os ayyl ut pasn ajna bulqnop
dals 3y3 buiruaanob a3djauweaed

AJSXVI ‘suoLjduny
3beuanod burjjogd s0j ajeds sixe-;

101dAD
‘suotjouty abeaanod jjney ajqnop pue

agbuts ayy jo j0id e a0y beyy

INYdAD ‘suopjduny
abeaaaad jiney agnop pue 3 buis

sjuauou 3yj Guirjyndino a0y Geyy

o] (x)sS1va4N 03 3d3lgns sy abeys
e jeyy sadhy j|nes jo aaqunu e

o (1)138 °31e3s anLjoe ue
0} 3je3s ubLuaq e woay uot)
-1Suea] 404 djea [erjuauodxad e

(1)dv ‘@038 ubLuaq e 03
31035 IAL}IE UP WO4) U0L)
) -1Sued] 404 3jea jerjusauodxd e

(1)ad

. ‘wasAs ay} wouay pajelost
pue j|ney juauecwaad e se

pats1juapy st aeys ubpuaq

o e ul A)|nhey se pajylAaPp

ajnpow e jeyy A31(1qeqoad o

(4)vd

° ‘waychs ayj wouy paje|ost
pue jnej juauewsadd e se

PaLjLIuapt st Ijers aajjoe

° ue uy A3|nej se pajdNaPp

alnpou e jey} A3j{iqeqoad o

(1)) ‘wayshs ayy Aq paysew
e | ALInsssadons 3aq || Im uopyeaado
A3 n2y e jeyy £3gpiqecoud o

SAAL4N ‘13pow 3y3 ut papajoul
° 3q 03 sadA} jnes Jo aaqunu @

SJ9LISN
‘waysAs ayj ut sabejys jo aaqunu e

(1)4Sd31 “A1Lsuap waoytun 40
LeLjuduodxd ue 40y Si 43dj3wesed $43
3yl 31 Bugpuryap agqersen 403ed(puL @

(L)40HYI <A3Lsuap wiojiun a0
{e13uauodxa ue 40y Si 43j3weaed QWY
ay) jt Buiuisap a|qeraea s0redLpUt @

(1)413a1
ue 404 S1 43j3aweaed 130 Yl
J1 buturLjap ajqeisen uo0geILpUL @

(1)Sd3 *asnjrey 3qney

afbuls © 03 40 3Ije3ls pajlaAIPp

ayy 03 ajeys buponpoud 40443 Y3
WoAs UOLJLSURA} 40j J3dweaed e

(L)OHY 40443
JALII® 3y} 01 3IeS AAL}IC Y]
WoJ4j uUULILSURAY 404 4I33weqed o

(1)130 “23e3S PadANIP
3yl 0] IS IALIIP Y]} udamiaq
uoLitsueay Jog a3djaueaed o

AOXY YW

<ALuo suoLIngLaIstp getjuauodxa

aaey s|apow Bugjpuey jqnes ay3
JO [l Ji S3ULIIP UILYm 3|qetiser @

(3poy A1L{lqef |3y wasAS jueaajoy jqney.

a3yl ojur Apuo nduj

L3poW A11|tqeL|ay d.aem)jos
ayy woxy nding

13pol A3L{1qeL|3y 34eM140S
ayy ojut nduj

3

Srale NN
EARE M

iy

44

t
_w
".Nq,
[
# T

O R

.

._l;f"; . m

-,

S R

WF

L,

PR

JRRE P

ST :" Sy

r,’ N l:"

sy
-

R

AR

P ’f 1""«



vl-lil‘hlllxﬂ v X o % T T T Ty T St B T e Y T W=
[ L ..-...\.\Nﬂk#ﬁ. .mgp =3y YWY EE Y] @ @SN @S S DY @Oy W R ST e T e T

3-13

(panugauod) S1AdNI 111 3¥VI Y 40 NMOOGNVIYE "€ 3T0VL

TILIL ‘S13qel ucjiedijjuapy o

IHY ‘uojjewsojuy Kiewsms ayy jo
uoyjejndwod ayy bugydagye Adjaweaed o

INYLdL ¢ abesdnod

jJo yoeg e o) anp dn(je) w3 LS

Jo KypLigeqoad aygy fujyndwod

ug pasn $J01I3A j|nej Jo aqunu
ayy jpwg| 01 pase J3jaweaed o

INULSY
<K1t11qeqoad dsngpey abeaanod Yy
Gupindwod uj Pasn SWAI) JO LquNU

ayy 1w 0y pasa Ja)aweaed o

914142 ‘papjacad
S| 394} y|ney sajed (edqyjad e
10U A0 JNTNM bugyedgpuy Geg) o

(x *f) WY

+x abeys a0y § adky j(nej 3y}

40§ ajed IIUIALNII0 (Ney
LINgE3N Yy jo X Jajoweaed o

(x *f) 90
sx afieys 40y [ adLy yney
40) ajed IUIAANII0 J|NeY
LINGI3H 3Y) JO ™ adjameaed o

(x *F) date °x abeys
a0) uoyyedjpdads sadhy jqnej o

Isvall ‘aud
6413 Yy J0) pasn 3|eIs iy O

14 ‘passasse aq o) S|
wa)sAs ay) YIJys o) awpy 6L @

x *t) dON °X abeys
40§ suojjeanbjuod (euogyesado o

(x)u
¢ (euojjesado aq o3 9151 abeys 40)
papaau sI|Npow JO 13QWNU EE|U L ¢

(x)N ‘x J3qunu abejs
uj sagnpow (eI|IuaP} JO A3quau °

(apoy LrsLiqesion wosAs juendio) Jqued
ayy ojug Kquo nduj

tapoy 111498134 48NSO
ayy woay Indyng

(3P0 11119813l 34eN3J05
ayy) oju} nduj

,A"’.‘ \‘--

an
RN

-

Mt g

Y
N

A PR RR A

N

.

AN a YA TR AT

R U O R | .hv"\—v




.2 ,% %' £4 e e v PSS R T BT T w e
i

i 4GNS SRS AN d RRSSAASA Pt s d

SINGINO T3U0W ALITISVITIY JYVMLI0S IHL OL SLNdNI II1 34V 3L 40 JIHSNOILVIIY "¢ JT8VL o

SIVI4N 03 3d3fqns st
! abeys e jeyy sadAy j(ney jo s3aquny

(4)L38 "
X ¢33e1s 3AL1Ie ue 03 3reys ubruaq e .
WO4S UOI)LSULA) 404 e [PLjuU3u0dX]

. » P v&.—( Ap.-\.,
X ¢3103s ubruaq e 03 Ijeys aaijoe ue -
Wo1j uollisuesy 40y ed (egjuauodxy S

(1)94 ‘wa1sAs 3y} wouy pare|ost

X X pue j|nes juaucwsad e se papJLIUIPL
si1 3e)s ubruaq e ur Ayneg se

pa123313p Inpow © jey) A3t|Lqeqoad

(t)vd ‘waIsAs ayy woay pajefost

X X pue j{ne; jusuewsad e se patyLIuapl
SL 31e31s 3agrde ue ul Kyfney se

P33123313p Inpow e jeyy A3tLiqeqoad

3-14

(1)) ‘wasks
Yy Aq paysew A [nJSSaIINS g (| Im

X X uopjeaado Ay ney e jeyy A3i[1qeqosq
SJAL4N °©13pow 3yy ul
X X papndul 3q o} sadky jnes j0 saquny
S40443 mn
buiutewdy jo S10443 JO J1IW ‘aangieg | (1)y ‘uotrdunyg (1)z ey 8
J3qunN (e10] | JA3quny (Pj0) 0f dwi| uedy L1riiqer 9y paezey syndup [I1 JYVI '
SIUIMILNSRIY D130)S SIUMIANSeAY diweul( _

19poW A11t1qeL(3Y aaem3 oS aij) woa) sinding

WA TR AT A AR RN U R E U TS = S T W A R W R T W W W W T W PV W W W R AR S T e TN TR e s g T E W amacuran

Pt M LRSI |

FCTRPOEOTT  ANRERRRT - (ARRRRAOS (ARRSESNNERIANAARES | INNERRDN RES A4 £ RS SsUEE Y



R Pe PR A RERANE Y S N Y il it

_ERI T W MY W W S Y W Em e SN ST W W T T = = T

(panugiuo)) SINALNO T300W ALITIOVIN3Y JYYMLI0S 3HL OL S

1NdNT TE1 38D 3HL 40 JINSNOILYITY "¢ 118Vl

3-15

(x *f) WW4 °x abeys 404 €
adky jnes 103 es 3Jua314nJ30
jtnes LLIngLan 3yt 40X 43j3wesed

(xf) 90O °X abeys 405 €
adA} j{nej s0j e 35u3L4nd20
ey LLNQEAN ) jO ° Jdajaueded

(x *f) dALe sx afeyrs
40) uojpiedjspdads sadA] jtned

$40443
fugugvway jo
aaqunyy {eyol

sa0443 Jo
JqunN (e10L

411M “a4njed
o) awp) ued

(3)y “uojidund
SYTELLITEY

(1)z ‘aaey

paezej

syndug 11 3WVI

sjuawasnsedy 31115

sjuawainseay 2 qweulq

opod A1t11qesioy a4

R

en)1jos Y} woud synding

N

e e e e m




LSS S

3-16

Pobolo¥l ol %N

BHITNEI LALLM ANA YD A A% BTN e

SINANI SAN 3HL1 40 NMOGAYVIYE

s ¢« 2.7 % T CorrtrrrlrA F.5.Tw et LN e « § F """+

‘S 318vlL

Ctd «c # pue
1§ UDIMIIG JUILDLS$30D UOLIL|3UA0D O

U “SUOISAIA IALIIC JO JIquNU @

«J 3pow uoumod uy Ajfnej aq 0}
pPamo| [P SUOLSJAIA JO A3qUNU WNWIXPW @

‘E
cqutod %23yrssoad Aue e Ai(nes aq o)
PIaMO( (@ SUOLSIAIA JO A3QUNU WNWIXPW @

{d “1# uoisaan jo A31[1qeqoad 40u4d @

13poW A31(1qet |3y waysAs juedajo] jney
3y} ojuy Apuo nduj

(3pow A31|1qei |3y 3.em3jos
3y woay nding




L PR -FRANA A7) PR XX XS

|.¢ .N“'\‘Ei,-ﬁqglfHUVHnﬂluuull ' X Ll o sl e B Rt ot

SINALN0 1IU0W ALITISVITIY 3YVMLI0S 3HL OL SINANI SAN JHL 40 JIHSNOILVIIY ~9 378Vl

X X £ «J ‘9pow uouwmod ug Aytnej aq o1
~ PaMO @ SUOLSIIA JO LIQUNU WMELXEH
A . -
< <jutod
X X X yoaysssoad Aue je Kyfnej 3q 03
Pamo| (@ SUOLSAIA SO AIQUNU WEXCH
td
X ‘1§ UOISAAA jO Kyt 1qeqoad 40443
S04}
bututewdy jJo S40443 3O 1IN ‘aanptes | (3)y ‘uoildung (1)z “aey
Jaquny (ej0] | 4A3quny (@30] o] Jwt| uedy Ayppiqeliay paezey sindu] SAN
sjuawaansedy oLyels sjuawaansedy djpweulg

19poW A1118qet {3y 34em1joS Y] WO43 synding




3-18
4.0 CONCLUSION

With the interface definitions as described, the software reliability
model is able to be used in a stand alone environment or in conjunction
with the fault tolerant system reliability model. This setup is useful
for error detection. The first stage in providing fault tolerance is
to detect errors arising from the execution of the primary module. ODuring
its execution, the module will be subjected to the interface checks provided
by the underlying system. These checks could detect the consequences
of faults in the module and hence signal an exception.

¥

a3

T

rd

P

o Dt

L1
-
]

B S M A

ittt

O o

kA

P P e AT,

s

PERS

5> - .\'-‘:'.\l‘\j\;‘)

Lt ye

»
N



3-19

5.0 BIBLIOGRAPHY

Anderson, T. and Lee, P. A., FAULT TOLERANCE Principles and Practice,
Prentice-Hall International, Inc., Englewood Cliffs, New Jersey,
1981.

Bjurman, B. E. et al, "CARSRA: Computer Aided Redundant System
Reliability Analysis Programmer's and User's Manual", Boeing Commercial
Airplane Company, Report Number NASA-CR-145024, August 1976.

"Evaluation of Reliability Modeling Tools for Advanced Fault-Tolerant
Systems", AIRLAB INTERFACE, A Progress Report, NASA Langley Research
Center, Hampton, Virginia, December 1985.

Makam, Srinivas V., "Design Study of a Fault-Tolerant Computer System _
to Execute N-Version Software", University of California at Los Angeles,
Technical Report No. CSD 821222, December 1982.

Ness, W. G., McCrary, W. C., Bridgman, M. S., Hitt, E. F., and Kenney,
S. M., "Automated Reliability and Failure Effects Methods for Digital
Flight Control and Avionic Systems, Volume [: Evaluation", Lockheed-
Georgia Company and Battelle Columbus Laboratories, Columbus, Ohio,
Report Number NASA-CR-166148, March 1981,

Prater, Shirley A., "Software Reliability Assessment Methods, Review
of Studies of Software Reliability Models", Battelle Columbus Laboratories,
Columbus, Ohio, October 198S.

Rose, D. M., Altschul, R. E., Manke, J. W., and Nelson, D. L., "CARE
II1 User's Guide", Boeing Computer Services, Seattle, Washington
(Prepared Under Contract Number NAS1-16900), January 1984.

Shooman, Martin L., SOFTWARE ENGINEERING Design/Reliability/Management,
McGraw-Hi11 Book Company, New York, 1383.

SO BREINI IO RLL S

L] .‘-.:¥--

e v aaEm a0 P P R RS _3.9,.7 . " H WA 2 TN



- -

PR

“ camw s W = = -

o v o m—————e— =

|

4-1
TECHNICAL REPORT
on

FORMJLATION OF THE SOFTWARE RELIABILITY MODEL

1.0 INTRODUCTION

A hierarchical software reliability model which predicts the
reliability of software prior to its development {s proposed. This model

shall include both fault tolerant ars fault intolerant software considerations.

With this model, measurement of the reliability of software under develop-

ment and identification of the data to be collected to make this evaluation
shall be possible.

2.0 SOFTWARE CHARACTERISTICS

To handle both fault tolerant and fault intolerant software,
the reliability model shall include single version software, N-version
software, decision algorithm(s), recovery block(s), and acceptance test(s).
The software characteristics of each of these design techniques are dis-
cussed in the following sections. In addition, when trying to specify
software reliability, the principal concern in actually to describe the
ways the software can be unreliable. Software reliability may be charac-
terized by a profile that describes the modes of failure that the software
can exhibit as a consequence of faults [DURHAM]. Therefore, the types
of faults that are related to each of these design techniques are included
in the following sections.

2.1 Single Version Software

This is a probabilistic model of deterministic or random events.
Usually, the program execution is deterministic, while the development

W = =i W M e

-
s

Cata AN, T P 3 T P YT,

P e Lot A B I DR



IYTiitlitTew .

il

.,.
LIS

JERY VLR LL

Lisss

K

NS

issaik

SYPEYY

2

)

% Ly

4-2

process is probabilistic. Some examples of failts that are characteristic
in single version software and must therefore be accounted for are:

a. Incorrect specification

b. Misunderstood or unclear specification

¢. Algorithmic error (sometimes called a computational or
logic error)

d. Input data error

e. Program logic error

f. Output data error

2.2 N-VYersion Software

Ne-Version software is a fault-tolerant software technique which
implements, usually in parallel, two or more versions that are functionally
equivalent. These versions may be produced independently by separate
programming teams or they may be made explicitly different through examination
and subsequent forcing of differences into the versions [KELLY]. Nevertheless,
when the alternate versions are compared, the faults should be distinguishable
[HITT84]. Some of the faults associated with N-version software include:

a. Specification error

b. Performance error (due to incomplete, inconsistent,
or ambiguous specifications)

Non-termination error
Algorithmic error

Input data error
Output data error

H0® Aan

2.3 Decision Algorithm

The decision algorithm determines what the specific output
should be. The decision algorithm may be a majority vote, a median select,
a bit-by-bit comparison (with the number of bits that are to be compared

or are significant specified), or an average [KELLY]. Some considerations
to be made in the software design are:

a. The type of decision algorithm used;

b. The allowable range of discrepancy of each input from
all other inputs to the decision algorithm; and

c. The data sensitivity of the decision algorithm.

| o - ]

W e s, Py eI N

“ m e mw m W B



2.4 Recovery Block

The reccvery block method is a fault-tolerant software technique
which provides alternate components which may be switched in (usually
serially) to take the place of a faulty component that has been rejected

by the acceptance test. These alternate components are designed independently

from the main software component (the primary alternate) and generally

only provide partial functionality of the software component, thus reducing
it to a degraded, simpler mode. Prior to entering an alternate, the

state of the process is restored to that current just before entry to

the primary alternate [RANDELL]. Some examples of faults that occur

in the software for recovery blocks include:

Specification error

Performance error

Non-termination error

Algorithmic error

Input data error
Qutput data error

e X - -]
o o & o o o

2.4.1 Forward Recovery Block

A forward recovery block restores the system to a consistent
state by compensating for inconsistencies found in the current state.
For a single process, the forward recovery block technique requires a
detailed knowledge of the extent of damage done and a strategy for fixing
the inconsistencies [HITT86]. Therefore, for each data abstraction,
exceptions shall be specified as a response to run-time attempts to violate
its inherent invariant properties. These anticipated faults can be handled
by forward recovery block techniques [HITT84 and CRISTIAN].

2.4.2 Backward Recovery Block

Backward recovery block techniques involve restoring the system

to some previous known correct state (referred to as rollback) and res.arting

the computation from that point [HITT86]. Unanticipated faults, i.e.,
design faults, can be handled by a default exception handler using automatic
backward recovery [HITT84 and CRISTIAN].

S T I N TR P, W VAR VO, W

4
»

2

I I 4
LAY

-
E}.

Fal ol =

wrw ':-

\“1’"

Y,

[4

e G et AT



e e .
SA A DR ooaa

- e

PG

AR

Bl bt o AT

J
als,

'I,H l‘ e’ a
S

. gor e e e =

IARRY
ry 4

IA"
-

e
LK |
- e .

2.5 Acceptance Test

An acceptance test is a logical expression or algorithm which
checks the acceptability of the results (or input) that are generated

by a software component [RANDELL]. The faults thai are associated with
an acceptance test include:

a. Specification error
b. Performance error
¢. Algorithmic error
d. Input data error

e. Output data error

2.6 Rollback

The rollback recovers the input state of the software to its
condition prior to when an incorrect or faulty version was run., This
resets the software to the input state necessary to run the next version.

A rollback is used in connection with a recovery block and hybrid N-version
software systems. Faults that are characteristic of rollback are:

a. Specification error
b. Input data error
¢

. Qutput data error
d. Unrecoverable state

2.7 Roll-Forward

The roll-forward is always used in connection with a forward
recovery block. The roll-forward transfers the restored state obtained
from the forward recovery block to a forward position in the system.
The forward position for this transfer depends upon the state for which

the forward recovery block has compensated. Faults associated with roll-
forward include:

a. Specification error
b. Performance error
¢. Input data error
d. Output data error

LINE FUR )

- w e v>» ¥ ") Ly B



RELIRSANGEY SRy PNy - FEVERIPAY (U URMA NN AKX Y FOBOUNY  IUTRTLl JUSIVEPN Sauvh

- TR cat k4D
TR ISR LB

:a\ll -*

4-5

3.0 SOFTWARE INTERFACES

Software reliability is a probabilistic measure and is defined
as the probability that a software error which causes discrepancies from
specified requirements in a specified environment does not lead to a
failure during a specified exposure period.

3.1 Inputs

The inputs to this software relifability model are the individual
probabilistic reliability values (or safety, availability, or accuracy
values, if desired) for the function blocks. These values are efther
obtained from the software reliability data base, estimated by the lines
of code (and the language), derived experimentally by subjecting the
function block's software to a number of test cases and counting the
failures to determine a reliability value, or from lower (detailed) level
models. The fnputs should be real numbers with a range of 0.0
probabilistic reliability value (or safety, availability, or accuracy
value) < 1.0.

3.2 Outputs

The output of the software reliability model is the overall
probabilistic reliability value (or safety, availability, or accuracy
values, if desired) of the closed loop block diagram. The output can
also be for different levels within the hierarchical software reliability

model, ranging from simple, high level block diagrams to _complex, detailed
block diagrams.

3.3 Communications
Wwhen first developed, a function block may be considered to

be highly reliable, but if the software or that function is subsequently
rarely used or tested, the confidence in that reliability value may be

.....

ELALS YRS MIrLLLLfas ERrhthihhs. Kl

e-e ¥ P PP LS AE B C_ D S gy

- e ™ v w S

.........



N YR

IEE EEEEY EN NN R

R I R

Cmm &4 ~8 o N

4-6

much lower than 1t would be with extensive use and testing. Two such
examples are a backup bus controller and the auto land capability on
some aircraft. (The auto land capability, on some aircraft, is checked
only while the aircraft prepares for takeoff and then not again during
the entire flight until it is actually needed for landing.)

4.0 SOFTWARE FUNCTIONS
The model is represented using control system notation for

model representation. Each software module is considered to represent
a transformation of input to output. While a signal flow graph could

be used, a simulation diagram equivalent to the flow graph has been selected.

4.1 Menu Selection

Each module can be represented by a transfer function whose
type is a unique icon. The software shall enable menu selection of the
following icons:

a. Structure Icons

e single version software

e N-version software (the number of versions must be
specified by the user)

e decision algorithm

e recovery block (the number of alternates must be
specified by the user)

& acceptance test

e rollback

e roll-forward

b. Transfer Icons

forward path

positive feedback
negative feedback
positive feed-forward
negative feed-forward

It shall be possible to place these icons along a display such
that a block diagram is formed. Each of the structure icons shall represent

a function in the software that is under development.

Y TATAMAY, ¢ BENNPI S d VPPN Al A

o e s rmEman W _O_O_S_ar b



4-7
1 L Yersion 1 | —= 3
N Decision T
P = | Version2 | —= | Algorithm | —= p
# . - !
L Version N | ~—e T
Figure 1. General Format for l-Version Software
version Acceptance
1 1 — Test — 0
N ) ]
t ecision
S Ver;‘ion : Accggsince : ATgor{ thm ;
T . : - u
Version . Acceptance T
N —— Test —
Figure 2. N-Version Software with Acceptance Tests
I [ Version 1 | === 8
N Decision
P —= Llersi - A?gorithm ";
# . !
Vers:on N —— T
Rollback |
Figure 3. N-Version Software in MWhich Only
x Versions are Used at a Time
AR P PP Y AR L S INCET U I SN PR RN (G I TR N A L P i i

~

e I0Y

T @ B O iy

IR, A T ol el i A o WYY

.2

N ~ 2"
it M Cata L A A LN VY. L VEKEAEAIIIANE DD DY RNT LTRSS,

o



4.1.1 Placement Requirements

The structure icons, given in Section 4.1.a, are listed as
independent entities. However, when N-version scftware is chosen, it
must be coupled with a decision algorithm in the general formats depicted
in Figures 1-4.

Figure 3 represents an N-version software model in which only
x of the versions are run at a time. If these x versions fail at the
decision algorithm, then the software is "rolled back" (or restored to
the original input state), and another x versions are run. This cycle
will continue until the decision algorithm passes, the software "times
out" (reaches its maximum time 1imit), or aii of the versions have been
run [SONERIU].

Acceptance
Test
0
I { version 1 e - ]
N . 4 { Decision T
5 -T-—| Version 2 J— - .| Algorithm - P
. . . . U
T - L] . ] T
LVersion N} -
Rollback -

Figure 4. N-Version Software in Which the OQutputs are
Subjected to an Acceptance Test if the
Decision Algorithm Fails [SCOTT]

When the recovery block is chosen, it should be used with an
acceptance test in a format similar to:

LT R AL St R S ST PR ERTRERERET LGRS A e N St SrTAAT AT

e e e e A m . A w e AR S A AL LCaTIT™ N YWY Y NDN LT LTSN IO T 130K



oy REORVIRESd Y ETERA TSR ATC R EFRIN DTSR EoNeKesa LTS T e P oo e a" e e Vi WiTaeTa A EF T W R R W W TV .rm

.

o

te

.

¢,

oODra D
oODra D :

.

4 J ‘\N

[*] - o v

o rr] ’

- o “

- =

e >

[ 8 e

@ > @ L

e Q > .

[ ~4 (1] @ o ¢

a3 Q U o ,.,.

a e g v
@ o > 0 3 Y

g s S T |

< t = o ‘
S L .

o

3 P & .

ae x = N

9 © 7] Fd - "

a Y- .N S -

— o - w o *

° - ‘e ~ )

] o ey o - .
m 2 .

< e~ oyl = w o 1= w >
g |2 |2 = o o |2 = g
g IEL e o o |9 |= ¢ £
s 13 |& g SRERE S
had I hast I st 3 3 138 18 3 <
> o — Gt g e .
<l Il |I© . <| |«} |< . g
- wy - (¢t -
: t ,

-_— > 2

“w - e .
u__.
—zZoa o —~za D -
.n

i
r

¥

1

r
e A AN

B ROTTI IR A IRERIY, arRinnicARAAURNuE R Coaa ua e AAREE ) L ARSI NN AR AL ERAGE ARAN



N ISeSrINL I

0

- 1 | Alternate 1 B u
- N Acceptance Any T
p ~—e=| Alternate 2 |—e Test —a=| Process —T- P

= u . ]
[ ] T CAlternate N T

ST TSI IRY

s conssidgey WAL e B AN ) BN L

8-10

A variation of the forward recovery block format might be:

Rollback

- Roll=-Forward

Figure 7. Alternative Format for a Forward Recovery Block

Section 4.1 lists the decision algorithm and acceptance test
independently of the N-version software and recovery blocks to allow
for the variations in the format. This permits the decision algorithm
and acceptance test to be used independently, as well as in conjunction
with their respective pairs [(N-version software and decision algorithm)
and (recovery block and acceptance test)]. Keeping the decision algorithm
and acceptance test as separate entities requires that each N-version
software, decision algorithm, recovery block, and acceptance test module
have individual reliability values. This should improve the accuracy
of the transfe: functions for this portion of the diagram since it will

accommodate variations in the implementation of these concepts. (Reference
Section 6.0).

4.2 Federal Aviation Administration (FAA)
Function Criticality Categories

The system functions shall be classified as critical, essential,
or non-essential, according to the effects of malfunctions or design
errors. The categories are defined as:

[ PN W]

- .. e

<<<<<<<
__________

RN A L e, m S A A A, A - 4 P I “ £ gy N ; Ly No)
e T AT AR AT T T A R e AT e P T A A T AT AT AT T A T




4-11

a. Critical - Functions for which the occurrence of any
failure condition or design error would
prevent the continued safe flight and
landing of the aircraft.

b. Essential - Functions for which the occurrence of any
failure condition or design error would
reduce the capability of the aircraft or
the ability of the crew to cope with adverse
operating conditions.

c. Non-Essential - Functions for which failures or design
errors could not significantly degrade
aircraft capability or crew ability.

The most critical function of a system will determine the category of

the whole system unless that system has been partitioned into elements
having different categories. Correspondingly, the software levels used
throughout this report are Level 1, Level 2, and Level 3. The software
level required for certification of functions is based upon the applicable
criticality category. Level 1 is associated with the critical category,
Level 2 with the essential category, and Level 3 with the non-essential
category [RTCA].

4.3 Function Block Reljability

It shall be possible to determine the transfer function (“relfability")
for the function blocks in the block diagram through the use of a software
reliability model which addresses dynamic measurements. These transfer
functions are often available through previous research and will consequently
be furnished in the software reliability data base. (Reference Subtask
4.4.4, Define Data Required for the Software Reiiability'bata Base and
Set Up the Data Base).

Furthermore, the FAA criticality categories will be supplied
for each of the transfer functions to identify which of the function
blocks or parameters strongly effect the overall system criticality.

Any variation in the criticality of these function blocks would have
a dramatic effect on the overall criticality estimate and its associated
confidence level.

o ITAR R O

- . . -~ ~ . . SR SRS oo -~ S § S . e R _ s TR AT SN BN
T e T T T A e A A A T i L T LN D AN T TS T

)

.'..

R
ALY

o ra

LT A

*Q
r

v

I

€y ¥

e, Iy Y

P
Pl

.
-

LA RNNG F R P EE LA I IDITONG




U AR VSIS VSV NI VR PERE SR " WA T RIFIZVISERTERRNY Wy oy W W u-r\-v\.q--q-a.-..,.,.-..-—--uuu-u--.-—-”.--"-u---——‘.-.__.—q
~

4-12

4.3.1 Detailed Function Blocks

This hierarchical software reliability model may be used with
varying levels of detail [and consequently will provide varying degrees
of accuracy (Reference Section 6.1.)]. Figure 8 gives a simple example
of a possible situation. In this example, relifability values (probability
of the software functioning correctly) may be substituted for each function
block. This will permit the determination of the overall system reliability.
(Reference Section 4.5.) However, this is a very high level model, and
as such, the accuracy of the reliability values tend to be not as good
as might be desired. Each of the software design techniques (single
version softw.re, N-version software, decision algorithm, recovery block,
and acceptance test) can actually be broken down into more detailed function

3
'y
~
]
2
S
2
@
¥
s

-
ES

’,

blocks, dependent upon the possible faults associated with the software. 22
These faults were discussed in Sections 2.1 through 2.7. Zﬁ
A detailed diagram for the single version software function “

block and the decision algorithm function block are given in Figure 9. E
With reference to Sections 2.1 and 2.3, Tables 1 and 2, respectively, ;
show the association between the identified faults and the portion of N
the diagram in Figure 2 in which they would occur. Therefore, the relfability b
of each of the detailed function blocks in Figure 8 1s a probability ﬁ
of success for that portion [or 1.0 - ( the probability that the associated 2
fault(s) listed in Table 1 or 2 for the detailed function block will E
occur)]. >
4.3.2 Function Block States g

The four possible states for any of the function blocks (detailed i

or not) are:

- aa

a. the function block fails (an error is detected in the ‘
function block) and it is corrupt (contains one or more .
error);

the function block passes, yet it is corrupt;

the function block fails and it is error free; and

the function block passes and it is error free.

anooT




"“nnww““"“““w‘u‘w““"“-—""“ ------------------------------------------------- - e - cvmerem

.

4-13

Single { Version 1 | {Alternate 1 | Accep-

Version | e g n
tortre [~ CEEDIZ]=gigor- [ BTG 7~ 4% |

[Version W 1 (ATternate W]

—) D=

-~ CO4C O

Rollback

Figure 8. Simple Block Diagram Example

l Input Input Qutput
—a| V2]idity] —e= | Integrity Algori‘hm

[ —e | Format -

e K= - )

~CVvVHCO

K
:

q

)

P ALY
*

Input/
Output | -
Integrity

, .'
Y nh

T

Figure 9. Detailed Diagram for the Single Version Software

Function Block or the Decision Algorithm Function
Block

Sl
LAY

Vaaly vaT® 7

A pal- 7y

»
R Y

‘I
a A

o

" .'. : - Vs
J."".’ \.r\ i -

O P L PO PR R SR SEITID NS M SR S S
BOELIPENE S0 £ "’,r [ STV CAPERERINE SV PR LANT J? S AN



oS

of the Single Version Software Function Block

B

4-14 $:

o

ta

Detafled Function Blocks '_'2

Input Input Qutput Input/ t'-'-:

Validity | Integrity Algorithm Format Output é

Faults Integrity

"~ Incorrect ﬁ

Specification X X X X X n

3

Misunderstood &
or Unclear X X X X X

Specification g:

Algorithmic é
Error X X X X X

:4

~4

Input Data .

Error X X .

N

iy

Program K

Logic Error X X X X X L

:

Output Data ¢
Error X X

Table 1. Correlation of Faults with the Detailed Port'ons

g o" 8 4+ B

S E E s & & "a AX




T M W W W W W R Mt M RTS A . o L . ftmeim e s mism e mcsen s e = s S oo

4-15

Detafled Function Blocks

Input Input Qutput Input/
Validity | Integrity Algorithm Format Output
Faults Integrity
Input Range
Error X X
Algorithmic
Error X X X X X

Table 2. Correlation of Faults with the Detailed Portions
of the Decision Algorithm Function Block

-

[ N N R

T . Y gt A A



4-16

A mathematical truth table for these states is given in Table 3.

Error ' SPFOP Error
Exists etected Corrected Reli- Avail-
State in the ;n t:g in the Safe able able
Functs unction Funtion
Biock " | Block Block
a T T T T T T '
2
* ~e:
a T T F T T F ég
b T F N/A F F £ A
é‘l
¢ ; T N/A T F F o
:1'1-
d F F N/A T T T ~
Key: o
N/A = not applicable ?
» = True or False (the common interpretation is given) N
:
Table 3. Truth Table of Function Block States :j
~
)
R
]
*
N
)
=
X
N
i
3

T Ry g




4-17

4.4 Software Reliability Data Base

A software reliability data base shall be established to store
reliability values for the various function blocks identified in the
software reliability model. These software reliability values will be
collected from research performed and documented in technical reports.
The use of these reliability values will provide a more accurate estimation
of the software reliability and the confidence associated with this estimate.

4.5 System Reliability

The function blocks will each have an associated transfer function
("reliability"). The overall system relijability is determined via block
diagram reduction techniques, thus giving the overall system transfer
function,

In this software reliability model, the signal-flow diagram
reduction technique is used to determine the overall system transfer
function (“reliability"). The signal-flow diagram is useful in analyzing
multiple-loop feedback systems and in determining the effect of a particular
element or parameter {n an overall feedback system, whereas the block
dfagram is useful in the design and analysis of sections of a feedback
system, Block diagram reduction techniques become tedious and time consuming
as the number of feedback paths increases. To solve complex problems,
it 1s much simpler to use the theorems and properties of signal-flow

graphs.
) The equations used in this analysis follow S. J. Mason's theorems
on the properties of signal-flow graphs. The general expression for
the (closed 100p) system transfer function using the signal-flow diagram
reduction technique is given by

£G4
Reliability = _K_£_<.'<_

A

CAC]

g 7

5

7/
R

=

2® PR

¥ 2y A
AT

2.3 0 s 8 "
[y AS
v SN

%

'.'3';'

SRS

eOTy
-.._LJJ.‘

., I'\.{'l,‘;

- .
fola?

._w P W, »
XXX A X

5

o

e

ARRRS

E )
A

ERARA P s L LS

-
b

e
Pty »
laley



4-18

whare

1 -2Ly + fLp = ILg # ... + (=1)0 ILp,
Ly = the gain of each closed loop in the graph,

Lo = the product of the loop gains of any two non-touching
c¢losed loops,

L3 = the product of the loop gains of any three non-touching
closed loops,

Ln *= the product of the loop gains of any n non-touching
closed loops,

Gk = the gain of the Kth forward path,

o = the value of & for that part of the graph not touching the
Kth forward path [SHINNERS].

(-3
]

The transfer function for N-version software and recovery blocks
are dependent upon the number of versions or alternates (n). For N-version
software, the transfer function is

Cn
1- 1 (1 - =)
i=]
with
n = the number of versions in the N-version software;
C(n,r) = the number of r combinations of an n element set;

Cn = C(n,2);

the product of reliabilities of the i-th combination
required for success;

1, 2, 3, ....Cn;
[(n/2) + 1] if n is an even number; and
[(n +1)/2] if n is an odd number.

N -
L] L]

For a recovery block, the transfer function is

Gy + (1 - 61)62 + (1 - 61)(1 - G2)G3 + ....
with Gj = the reliability value for alternate {1 and
i =1, 2, 3,...n.

™ e

-
o,

AN ST

-'s-.

DRI, AFF F R RS b L&'C':ﬂ:'-f:rv;mﬂ-b

CMmER WY T8 P T



4-19

The reliability values (transfer functions) for the hybrid

N-version software and the recovery block will vary if not all of the
n versions or n alternates are used. The above equations will give a
higher reliability value than the actual situation in these cases. Sections
6.1.1 and 6.1.2 discuss the accuracy of the reliability values for the
N-version software and recovery block and how they can be calculated
to reflect the actual situation. (See Appendices I and II for some examples
with these equations).

Although the transfer function for most of the function blocks is
the reliability value, one exception to this is with rollback or any
feedback block. For any feedback path, the transfer function of the
equivalent block in the path is (1.0 - reliability value). (See Appendix
III for a further explanation and proof). The'second exception is with
feed-forward paths. The transfer function of the equivalent block in
a feed-forward path (for example, roll-forward) is (1.0 - reliability
value). (Refer to Appendix IV for additional information.)

A

s

.

v
L

4.5.1 Simple, High Level Model Example

?‘r‘r‘r‘! A TN PLAIS
A B a i

For a sample problem involving a simple, high level model,
the example given in Figure 8 will be used. The Single Version Software

- v e
a¥a xS

will be a commonly used algorithm or process, and therefore, it will iy
have a high reliability which is well documented and stored in the software ;i
reliability data base. For this example, the reliability will be 0.9991. EE
The N-Version Software will have three indepedent versions, ;‘

running in parallel. This is a common form of N-Version Software, but ':{,:
not one with the highest reliability. Through the user's tests, it is e
determii.ed that this function block will have a reliability of 0.994. é
The Decision Algorithm will take an average of the outputs .

from the N-Version Software, excluding ~~v version which does not meet q
the timing constraints. This type of decision Algorithm has a high reli- "
ability since it does not have a range check or any other source for g
determining the validity of the output. This Decision Algorithm will n
not eliminate any erroneous outputs and will not detect the occurrence ?
A

»

3

,,,,,,,, B T AT NI TN LT PR SRy ~.-‘-_-.v,—.~‘-A-‘~.--.-.~,'\:'x" "\"r\."w-"" A ":.‘

. . A LI -~ ; e " ,”
e T ol e T o L T T
BN T R R A R S i S BTN -.G-ﬁﬂ-—.ﬂokﬂro RN N ‘Mﬂﬂ&‘dl-’.h‘hﬂ‘”



LArA

NIEUEN

Lol BT

‘l s l‘ ‘.r'.l ‘.c 'h': i) 'n‘.' ']

l"‘-‘»‘s ") 3 4&

4-20

of correlated faults. The decision algorithm is simple (and consequently
highly reliable), but it is not always the most desirable since its simpli-
city detracts from its capability of detecting errors. For this example,
it is assumed that the reliability of the Decisfon Algorithm is 0.988.

The Recovery Block is a backward recovery block with a primary
alternate and two additional, extremely simplified alternates. The Recovery
Block is of a common form and its reliability can be obtained from the
software reliability data base. For this example, it will have a reliability
value of 0.97.

The Acceptance Test is an output format check. This is a simplistic
algorithm which is commonly used in various modeis. The reliability,
as determined from the software reliability data base, will be 0.9997.

Finally, the Rollback recovers the input state of the software
to its condition upon entry to the Recovery Block. This is a retrieval
of the data from its memory location. The reliability of this common
form of Rollback will be assumed to be available in the software reliability
data base. For this example, the reliability is 0.9999. This makes
the transfer function for the Rollback equal to (1.0 - 0.9999). (Reference
the final paragraph in Section 4.5.)

Hence, for this example,

Ly = (0.97) x (0.9997) x (+1.0 - 0.9999) = 0.0000969709
Lo through Lp = 0

61 = (0.9991) x (0.994) x (0.988) x (0.97) x (0.9997)
= 0.951467

G2 threugh Gk = 0
a1 = 1
4 =1 - (+0.0000969709) = 0.99990302

Therefore,

Reliability = —2:951467) x (1) . g 951559
(0.99990302)

Reliability = 0.95.

- ol . A e . & . - L) ... - maear . . TR I T R N R ST TIPS I T S e J
AT R A AT T s R Y AR T SN A ' I T T T
AT LAETEA N AT N VSR L L T T ] B N R N e R . . .

"
'




4-21

4.5.2 Complex, High Level Model Example

The complex, high level model example will be as shown in Figure
10. Block (1) is a Single Version Software block. For this example,
it will be a simple algorithm with a reliability value of 0.998.

Block (2) is N-Version Software with nine independent versions
in which only three versions are run at a time. (This type of N-Version
Software was shown in Figure 3). For this example, it is assumed that
the relfability value for the N-Version Software s 0.999.

Block (3) is the Decision Algorithm for the N-Version Software.
In this example, the Decision Algorithm will be a median select with
a reliability value of 0.983. .

Block (4) is an Acceptance Test which will check that the range
of the output from the Decision Algorithm is correct. If the Decision
Algorithm failed, then the software will Rollback after the Acceptance
Test. Similarly, if the Acceptance Test fails, then the software will
Rollback to the N-Version Software. The input to the Acceptance Test
will be stored to accommodate for the Rollback from the Recovery Block.
For this example, the reliability value for the Acceptance Test will
be 0.992.

Block (5) is a Recovery Block of the common form with a primary
alternate and two additional alternates. For this example, the reliability
value of the Recovery Block will be 0.976.

Block (6) is the Acceptance Test for the Recovery Block. In
this example, it is assumed that the rgliability value for this Acceptance
Test is 0.995.

The Rollback for the 3ackward Recovery Block is given in block
(7). This is a retrieval of the data that was stored prior to entry
ifnto Acceptance Test #1. For this example, the reliability value for
this Rollback is 0.996. Thus, the transfer function for this block is
(1.0 - 0.996).

The Rollback for the N-Version Software is given in block (8).
For this example, the reliability value is 0.997. Consequently, the
transfer function is (1.0 - 0.997).

!-Fl
qﬁ%

o

kX

KA

ALK

"7

ey

5

e
-

oA CA AN
PLERAP PN IR



-
3

- vy

AT

s

T's's

1ii

o

i
Salel

s

o d

%

W AADERN oy

s

Al

[PUS—,

o

”
25

L7

A

. [P -
L ratatad

-’

A e W

422
.996
Rollback [P
(7)
.998 .999 .983 .9¢2 .976 .095
J
(1) (2)  (3) (4) (5)  (6)
.997
Rollback ———
(8)
.95
A |«
(9)

Key:

0O N WM+

—
w
~—

Single Version Software

N-Version Software

Decision Algorithm

Acceptance Test #1

Recovery Block

Acceptance Test #2 )

Rollback #1 -- Backward Recovery Block
Rollback #2 -- N-Version Software in Which

Only x Versions are Used at a Time -
Acceptance Test #3

Figure 10. Complex, High Level Model Example

L e -

—Cuv4C O

RS

LA

Ty AOCRSANYSS PERN RSN

e B _ s _Sut”a L

- - m_AA.S



2-23

Finally, block (9) is an Acceptance Test which checks the final
output against the input. For this example, Acceptance Test #3 will
have a relfability value of 0.95, giving a transfer function of (1.0
- 0.95).

Hence, for this example,

Closed Loop 1 = (0.999) x (0.983) x (0.992) x (1.0 - 0.997)
= 0.0029225

Closed Loop 2 = (0.992) x (0.976) x (0.995) x (1.0 - 0.996)
= 0.0038534

Closed Loop 3 = (0.998) x (0.999) x (0.983) x (0.992) x
(0.976) x (0.995) x (1.0 - 0.95)

= 0.0472068

ZL; = (Closed Loop 1) + (Closed Loop 2) +
(Closed Loop 3)

= 0.0029225 + 0.0038534 + 0.0472068
= 0.0539827
L2 through Ly = 0
G = (0.998) x (0.999) x (0.983) x (0.992) x (0.976) x (0.995)
= 0.944135

G2 through Gk = 0
a1 =1 ) .:':.:

4 =1 - (0.0539827) = 0.9460173 . o

Therefore, 51

g
(0.944135) X (1) = 0.9980103 :._,:.

(0.9460173) b
Reliability = 0.998. L,

Reliability =

AN P L N N NN e AN SN e YR S e e AL A R g A
EEMR TR st Bl " Vit e B R L £ T N T A T R O A PR Al P “a S P -

SaR o} AR [
Jin ! N AN L T




idiii’

.<,Id

SRS R ERIRTREE

WL L1

-1“,“,", ‘1‘1 2 4

g

PO RL RSy

4-24

4.5.3 Simple, Detailed Level Model Example

An example of a simple, detailed level model is given in
Figure 9. For this example, the structure icons would all be single
version software and the transfer icons would be either forward path
or positive feedback (Reference Section 4.1.). Hence, an equivalent
block diagram for this detailed block diagram is given in Figure 11.

In Figure 11, block (1) is a Single Version Software block
which checks the input set. This is a common process, $0 the reliability
value will be assumed to be available in the software relfability data
base. For this example, the reliability value for block (1) is assumed
to be 0.98.

Block (2), a Single Version Software block, will represent
an input integrity check. It will be assumed that this algorithm is common
and can consequently be found in the software reliability data base.

For this example, the reliability value will be 0.97.

Block (3) is a Single Version Software block which performs
an algorithm. For this example, the algorithm will be a simple one.
Therefore, the reliability value for this transfer block will be assumed
to be 0.992.

Block (4) will represent an output format check, performed
by a Single Version Software block. For this example, the reliability
value for this Single Version Software will be 0.996.

The final Single Version Software block, block (5), will be
used to perform an input/output integrity check in which the output is checked against
the input to verify the integrity of the input data. For this example,
the reliability value for block (5) will be 0.964. Hence, the transfer
function for this block.will be (1.0 - 0.964).

Thus, for this example,

Ly = (0.98) x (0.97) x (0.992) x (0.996) x (1.0 - 0.964)
= 0.033812

™

: 13 -2 R - P oam .~ N [ B s W - LIRS R IR SO N L . T S g g
R R Tt ety e Y N T Y S A I R L S )

CaRRARAN BTN R ARAGE LAAN L << P X )

PRI ¢ & & & & B



}

R BT PR RET IRE ERSENE:

| RPN

tam b

LY SRS RN S AR

TR

o

I

4-25
I
N Single Single Single Single
p =~ Version r-—- Version L—es| Version Version
U ] Software Software Software Software
T
(1) (2) (3) (4)
+ Single
Version
Software =
(5)
Figure 11. Equivalent Diagram Indicating the Structure Icons
to be Used in the Detailed Diagram for a Single
Version Software Function Block
WO L AR TN e

—~COoH4C O

R B -~

Y

]

.

v EASITELA DRIPPFS  Ins

| & S A AN

LY, 0,0 CCL AN DT

=%t

[ g pic o PR PR

P I I T ER LY Y Lot = s b I

- .-y * . "—m m® T B TS

.

- - ae a, i R T CIVRTRY s T S PRSI U I R S L SVl el
N Sl SRR NP N RV e A 2 N R T T*  BR T L S N e VI A1 S0 1UR S DIV S R SO A LA



il

DRSRSNUPRy P IR I ) S SRR HE SR AU EW] IR IFRRY _RERERSRE L

4

“aTaTa

L2 through L, = 0

Gy = (0.98) x (0.97) x (0.992) x (0.996)
= 0.9392232

Gp through G = 0

8101

4 =1 -(0.033812) = 0.966188

Therefore,

Reliability = —0:9392232) x (1) . g 9720016
(0.966188)

Reliability = 0.97.

4.6 Safety

Safety is concerned with the state in which the function block
fails (an error is detected), but the function block is error free.
Although a function block is considered to be unsafe when the system
is unreliable, safety also covers this extra state. Hence,

safety = [(the probability that an error exists and it is
detected) + (the probability that no error exists)]

or

safety = [1 - (the probability that an error exists and it
is not detected)]

while reliability = [(the probability that an error exists
and it s detected) + (the probability
that no error exists and no error is
detected)]

or

reliability = {1 - [(the probability that an error exists,
but the error is not detected) + (the proba-
bility that no error exists, but an error
is detected)]]

Therefore, safety > reliability.

o+,

.~ A o i BRI -~ d . ~ N - B R W LN O N P e VT I L L PR
T AR AT A e T Y S RN T W e G T T N

A"
LN

e e m es Wt R LARNT WL TN, LAY T BT,



4-27

Actually, the software reljability model can be used to determine
the safety of the high level models.” Instead of usin, relfability values
for each function block, in the determination of the overall transfer
function, if tne safety value for each of the function blocks is used
in the calculations, the resultant value will be the safety of the overall
system.

4.7 Avaflability

As with reliability and safety, availability can be determined
through the use of the software reliability model. To do so, the availability
values should be used for each function block in the determination of
the overall transfer function. By using availability values instead
of reliability values, the resultant value will be the availability of
the overall system.

The availability values are determined as follows:

availability = [(the probability that an error exists, it is
detected, and it is corrected) + (the proba-
bility that no error exists and no error is
detected)]

or

availability = {1 - [(the probability that an error exists,
it is detected, but it is not corrected) + (the
probability that an error exists and no error
is detected) + (the probability that no error
exists and an error is detected)]}

Therefore, 0 < availability < 1.0. By comparison to reliability
and safety, availability < reliability < safety.

aaaaaa

..........

POPITN RS I TR S W R R Rgy - T eovTgy =W WS RN e

amRs s s rasd) EMERAR LRSS



-2 s

—

PR PR

[P NN o GV G A

ot

PRI VAP LY o L

N

R Tl L e e S et T T P I P P S I Nt BN N N v, Myt s
L N A m._‘a \\s.“ﬂ.' LA R

4-28

5.0 TIMING CONSTRAINTS

If a software component should execute in 1 msec., a time-~
could detect software faults that cause the execution time to exceed
1 msec. Many of the reliability model's timing constraints deal with
the fault tolerant portions where the entire process (fault detection,
dawiage assessment, recovery, and fault treatment) must take place fast
enough to satisfy real-time requirements. “No matter which fault tolerant
software method is used, real-time systems must arrive at a consistently
correct solution within the time frame determined by the control system
dynamics. Failure can occur due to excessively long response times,
e.g., the system goes unstable since the hard deadlines for code execution
are missed." [HITT86]

6.0 ACCURACY CONSTRAINTS

The accuracy and reliability of the N-version software, decision
algorithm, recovery block, and acceptance test are dependent upon the
way in which these concepts are implemented. For example, N-version
software may be implemented as:

a. two independent versions

b. three indpendent versions

c. more than three independent versions

d. an N-version software model in which only x versions
are run at a time, and if these versions fail for some
reason, then x or less of the remaining (N-x) versions
are run. (This is depicted in Figure 3.)

e. an N-Version model in which a combination of x versions
are run, and if these x versions fail for some reason,
a different combination of x versions is run, and so on.
(NOTE: This concept is different from item d, above,
because tiis implementation groups different combinations
of x versfons. [tem d, however, uses x versions, and if
they fail, the x versions are in essence thrown out and
a completely new group of x versions are used; not a new
combination of x versions, but x completely new versions.)

Some of the differences which affect the reliability and accuracy
of the decision algorithm are:

r ¥ : AR AR A I P T
S n "‘-'.‘v'\‘.\"\f‘\.".i“ N T i IR IR P PP AP ‘."«..{“3) AN

AT NN M TREUS LS, Ty ANy R
Voo . X

ARV

—

R il

e s

R

LI AT IENT

YL,

L

»> s e e v TIW W W"E"S BV _ SIS

Ap AR TN A

P T SR AR oA PR TR R

ST L



4-29

majority vote;

median select;

average; and

the decision algorithm only considers those values which
are in certain range and then it uses one of the methods
(a, b, or c), above.

[« W oI - g -
e o e »

The recovery block's accuracy and reliability depend on the
following items (to name a few):

a. backward
i.) how far it rolls back; and .
ii.) the number of alternates available.

b. forward

i.) how far it rolls forward; and
ii.) the accuracy of the value(s) assigned prior to
the roll.

Some of the concepts that affect the accuracy and reliability
of the acceptance test depend on:

a. the range of the values accepted;
b. the rate of change determination for the variables; and
¢. the format of the data.

Sga

s d
"‘

Needless to say, all of these implementation characteristics ;ﬁg
must be considered and will affect the accuracy of the reliability values. ﬁsﬁ
Sections 4.1 and 4.1.1 discuss how the software reliability model is 5:2
set up to accommodate the implementation variations. With this software A
reliability model design, the accuracy is improved since these considerations agﬁ
can be taken into account in the assignment of reliability values (or ~y
accuracy -- see Sections 6.1 and 6.1.1 through 6.1.3 -- or safety or e

availability values) to the function blocks.

10
4

6.1 Accuracy 22;
The accuracy of the software reliability model will depend Ef;

upon the accuracy of the individual values that are used as the transfer s
functions for each of the function blocks. In most cases, the accuracy lj;
of a model with detailed function blocks will be better than the high :ﬂf
v

%

A

-~ - Y - i &
A N A e TN e e R e R e
- R S AN N L T N

>y

T T Tkt s SR N N AL
O A A O P D ,

T
S
3

1
2
IS
b)




by e

1rasand

I3

QEPANS |

FRPRRY SN

)

RPEPY ST Subh

1

¥ 1,
AKX

(ST RPRRNEY

v -3 n
1‘}&‘01‘1

L mee e n g e
SRR N Y RN PP IIv RN R ey

. LI
IRTE 0 R AF 3 R U

]

M

4-30

leval software reliability model since the accuracy of the individual
transfer functions will be improved (Reference Section 4.3.1.).

The accuracy of the reliability values that are used for the
function blocks' transfer functions will depend upon the method used
to obtain such values. If the values are obtained from the software
reliability data base, then the accuracy of these values are indicated
in the technical renorts for the research method that determined the
values. [f the values are obtained through the use of a different software
reliability model, then the accuracy is dependent on the type of model
used. Regardless, accuracy values can be obtained for any and all
of the transfer functions, and therefore, an accuracy for the overall
software reliability value can be calculated.

6.1.1 Accuracy of the Hybrid N-Version Software

The accuracy of the hybrid N-version software reliability value
(or safety or availability values) depends upon the number of versions
that are actually used. (Reference Figure 3 for an example of a hybrid
N-version software.) Usually, if the software is run and only y of the

- n versions are used, then the reliability value (or safety or availability

values) has been overrated by considering the additional (n-y) versions

in the calculation of the transfer function for the hybrid N-version
software. Certainly, if it is known that only y of the n versions are
actually being used, then the calculation of the transfer function for

the N-version software should only include those y versions. (See Appendix
I, Example 3, for a demonstration of this accuracy effect.)

6.1.2 Accuracy of the Recovery Block

The recovery biock, by definition, consists of n alternates.
O0f these n alternates, only one is run at a time, and only if that alternate
fails will the software rollback and run the next alternate. Hence,
if less than the n alternates are actually used, the reliability (or
safety or availability) of the recovery block will generally decrease.
Furthermore, this decrease in the recovery block's transfer function

Yy

S
"
L
a
1
¥

A 5 Y

Kh )
"

n\ :')..; ‘)

:



4-31

(reliability, safety, or availability value) will cause a decrease in

the overall software reliability value (or safety or availability value),
ca]culated with the software reliability model. (See Appendix II far
some recovery block calculations that address the effect on accuracy
when fewer than the n alternates are actually used.)

6.1.3 Accuracy Example for the Software Reliability Model

To demonstrate the use of the software reliability model for
an aczuracy calculation, the simple block diagram shown in Figure 8 and
the example in Section 4.5.1 will be usea. The first step in this deter-
mination is to assign accuracy values to each of the blocks. For this
example, the following values will be used:

Accuracy Transfer
Function Block Value Function
Single Version Software + 0.0002 0.9998
N-Version Software + 0.001 0.999
Decision Algorithm +0.003 0.997
Recovery Block + 0.005 0.995
Acceptance Test + 0.0001 0.9999
Rollback + 0.00005 0.0000%

Table 4. Accuracy Values for the Simple Block Diagram Example

These accuracy values reflect the accuracy of the reliability values
that are used in the simple, high level model example.

Opposite of the software reliability model calculations, the
transfer functions for the blocks are (1.0 - Iaccuracy value|). except
for rollback, roll-forward, the equivalent block within a feedback loop,
or the equivalent block within a feed-forward path, which use the absolute

value of the accuracy value. The respective transfer functions are listed
in Table 4.

LRSS, T I

A S

~ s

? ss\;r- *-;").

L0,

\ o

i ARSIl A T

2

U A

s

SISO R

<’ l:":‘.‘ '.L(‘{L' ’L‘, !

o

P 4

M. 2T ®



4-32

Hence, for this example,

Ly = (0.995) x (0.9999) x (0.00005) = 0,0000497
L2 through Ly = 0

Gy = (0.9998) x (0.99¢) x (0.997) x (0.995) x (0.9999)
= (0.9907257)

G2 through Gx = 0
Alﬂl
4 =1~ 0.00004¢7 = 0,.9999503

Therefore,
- (0.9907257) x (1)
(0.9999503)

=1- |o.9007748| = & 0.0092251
Accuracy = + 0.00%23.

Accuracy = 1 -

7.0 RESPONSE TO UNDESIRED EVENTS

The software reliability model described herein assumes independence
between the function blocks. This model neglects the existence of:

a. multiple faults which produce dissimilar outputs but are
manifested by the same input conditions, or

b. related software design faults causing identical incorrect
outputs.

The errors that are manifested by these faults are known as coincident

errors and cause a degradation in the reliability (or safety or availability).
Therefore, to improve the accuracy of the software reliability model,

the coincident errors must be considered. This might be done with an
analysis similar to that suggested by Dave E. Eckhardt, Jr. and Larry

D. Lee. The analysis makes the assumptions that (1) the input series

X1» X24...., is stationary and independent and (2) the versions of software
components are designed independently [ECKHARDT].

- . - - .. - - - N .- . . .~ . i . e . o me m g - . . . .
A en e ‘1'_- o IR L N L L B T ‘,">,‘-‘t‘.,,\..‘, . BRI T B _"'L,{\-,‘., -“V‘>-"~‘—\“,r‘ “,\__.", .."r.,"'-..“
. N . . N . N . Co T ‘\ . N v Ty o . v o R PN n

N - - B Y A - e

e R R R RP_P_ Rt Nt

e s - —ma— e -3 aaAaea~ww



4-33

When evaluating the probability of coincident errors, the area
of concern is the N-version software. This analysis is interested in
the probability that z or more of the functions fail at the same time,
with 2 = (n/2) 1f n is even and 2 = [(n + 1)/2] if n is odd. The following
analysis will give a conservative estimate (maximum possible) of the
probability of coincident errors for the N-version software. This value
might be subtracted from the transfer function of the N-version software
block to produce a conservetive value (minimum) of the reliability (or
safety or availability) of the N-version software and consequently a

WP a a0

a72"2"30 Wa’s"» s 2PN

.®_ v ¥ %

B ™ A

conservative estimate (minimum) of the overall software reliability value
(or safety or availability value).
The following equation gives the maximum probability of coincident
errors (E).
N\~ n *
(z) (1-6)% +(z+1) (1-6)%"
N \» N\«
(z+2) (1-6)%* 2+ ... +(n) (1-6)"
with n = the number of versions in the N-version software;
Gi = the reliability (or safety or availability) value for
version {;
i=1, 2,...n;
G| = the largest reliability (or safety or availability) value
among the group of r versions being evaluated;
z = (n/2) if n is an even number;
z = [(n+1)/2] if n is an odd number;
(2) = the number of r combinations of an n element set; and
(9)* = the actual r combinations of (1 - G4) values for the
different versions in an n element set of versions
(See Appendix I for some examples which consider the effect of coincident
errors.)
8.0 ASSUMPTIONS
The assumption: that are frequently made with the various software
methods are described below, along with the reasons for such assumptions.
These assumptions are logically grouped below the corresponding software
AN, S A T R T L P e ok ol e ,.:.-:"A:n‘;—-‘,,:-f,:f_."-’ 'J‘,'-v“_'.-(',:r-“ :w",v.’,,'
Tt S e e e T T el i E L e e T T T E e at e ‘ -



P g MGG E B Y PP TS T I R AR N D R S I TS % T

4-34

to benefit the reader. In the development of this software relfability
model, it is assumed that the software of the function blocks will have

complete probabilistic independence.

for any 111 effects that result from this basic assumption.

Single Version Software

Errors are not always corrected when detected and errors
may be spawned when correcting errors.

The time to remove a failure is considered to be negligible
and is ignored.

Inputs which exercise the program are randomly selected.

The failure rate at any time is proportional to the current
number of errors remaining in the program [PRATER].

N=-Version Software

a.

To benefit from increased reliability, N-version assumes
the probability of a common fault among the versions is
extremely low.

When a fault is determined, the damage incurred is limited
to the encapsulaticn of the individual software versions
and the overall function that the versions are performing.

Decision Algorithm

For a majority vote, it is assumed that damage will be
limited to the versions in the minority when the decision
algorithm is invoked.

It is possible for a majority vote to yield an incorrect
result if a majority of the inputs are incorrect.

Recovery Block -

Faults will manifest themselves within a recovery region.

The alternate versions of software components are independent
such that correlated faults are either eliminated or reduced

to an acceptably low leval.

The n alternate blocks are independent from the acceptance
tests [HITT84].

Acceptance Test

a.

.’44 n fqn,\'xlﬂj\n 4(\1

The acceptance test will recognize the faults.

- ~ - - - e e » I I T R N A T B S W R T .
Fa AT A et e VAT g LT Al ) AR AT AT T T e e T T

. .
P AL A L L e e B
m

However, Section 7.0 tries to accommodate

e W O 2 D B D P Al

......
e e e T e e .



[

ENREE

sid iy Beddsrdr LS 3Fod BLLUUAAL RALL 11 e Ll i

r

[N LI
"n':.i..'t.q 4:&41 '!r‘

[AVLA8E]

[CRISTI

AN]

[DURHAM]

[ECKHARDT]

[HITT86)

[HITT84]

[KELLY]

{MCGARRY]

{PRATER]

[RANDEL

[RTCA]

‘‘‘‘‘‘‘‘

L]

4-35

9.0 REFERENCES

Avizienis, A. and Laprie, J. C., "Dependable Computing:
From Concepts to Design Diversity", to be published in the
IEEE Proceedings.

Cristian, F., "Exception Handling and Software Fault Tolerance",
iEEE Transactions on Computars, Volume C-31, Number 6, June
982.

Durham, Ivor and Shaw, Mary, "Specifying Reliability as
a Software Attribute", Carnegie-Mellon University, Report
Number CMU-CS-82-148, December 6, 1982.

Eckhardt, Dave E. Jr. and Lee, Larry D., "A Theoretical
Basis for the Analysis of Redundant Software Subject to
Coincident Errors", NASA Langley Research Center, NASA
Technical Memorandum 86369, January 1985.

Hitt, E1lis F., "Software Fault-Tolerance (Task D-1),
Battelle Columbus Division, Columbus, Ohio, January 9, 1986,
pp. 1, 5-7, and 20-25.

Hitt, E11is F., Webh, Jeffrey J., Bridgman, Michael S.,
“"Comparative Analysis of Fault-Tolerant Software Design
Techniques", Prepared Under Contract Number NAS1-17412,
February 15, 1984, pp. 11-17, 30-35, 37, 40-44, and 68-90.

Kelly, John P.J., "Specification of Fault-Tolerant Multi-
version Software: Exnerimental Studies of a Design Diversity
Approach", UCLA Techiiical Report, 1982.

3
3
3
3
LY
-
n
“
"
v
p
K

McGarry, Frank, Page, Jerry, Eslinger, Suellen, Church,

Victor, and Merwarth, Phillip, Recommended Approach to Software
Development, National Aerorautics and Space ﬁdministrat?on.
Goddard Space Flight Center, Greenbelt, Maryland, Report

Number SEL-81-205, April 1983.

Prater, Shirley A., "Software Reliability Assessment Methods,
Review of Studies of Software Reliability Models", Battelle
Columbus Division, Columbus, Chio, October 1985.

P P R M e s 3 A )a%."

Randell, B., "System Structure for Software Fault Tolerance",
IEEE Transactions on Software Engineering, Volume SE-1,
Number 2, June 1975.

Software Considerations in Airborne Systems and Equipment :
Certification, Paaio lechnical Commission for Aeronautics, )
Report Number RTCA/D0-178A, March 22, 1985, pp. 13, 14, '
20, and 42.

- 2™l

D T T T A W N T L N AT WA BT LIS PR AT S IS IR SN
e TS \‘ Rl T A T N L A A \if"g‘,."‘,. LR AN A AN



SRVPE) (NRYRRFETRNENT ASRA FRPIRIEY SRERAEPS —FRICRRNS SPRRTRis S

PO

- .

[SCOTT]

[SHINNERS]

[SHOOMAN]

[SONERIV]

[TouL76]

______________

. .‘.4 W '.‘?,._'1'.!:1'_“q'_:,‘"’\"'\_"v{:v‘r4“_“!("‘(:_:{;‘_\‘”_ -“N.'.m .(‘- LY

4-36

Scott, Roderick Keith, "Data Domain Modeling of Fault-Tolerant
Software Reliability", North Carolina State University,
Raleigh, North Carolina, 1983, pp. 22-27, 37-39, and 42-45.

Shinners, Stanley M., Modern Control System Theory and
Agplication, Addison-Wesley Publishing Company, Inc., U.S.A.,

» Pp. 46-56.

Shooman, Martin L., SOFTWARE ENGINEERING Design/Reliability/
Management. McGraw-HT11 Book Company, New York, 1983,
PP.

-300 and 416-425.

Scneriu, M.D., "A Methodology for the Design and Analysis
of Fault-Tolerant Operating Systems", PhD Dissertation,
I11inois Institute of Technology, Chicago, [11inois, 1981.

"Definition of the Pilot-Project on Computer System Dependability",
Joint Report UPS-LSI/ONE RA-CERT/CNRS-LAAS, Toulouse, France,
January 1976 (in French).

[ RN ST
[ A A L. [ N ‘-*

5.

WAL S

[ o o0 &8 U PV IS R

- a8 W R N A g Y W



LAY R W S GO S SR M

rF b NI T s S G S

£

2Tl e e e s b e Ao e

4-37

APPENDIX I
N-VERSION SOFTWARE CALCULATIONS

The transfer function for N-version software fs given by the

following equation:

Cn
11 (leej)

=]

with n = the number of versions in the N-version software;

Cn

element set;

C(n,z) = the number of z combinations of the n

i ® the product of reliabilities of the i-th combination

required for success; and

i
z

1, 2,....Cn.

[(n/2) + 1] if n is an even number

2 = [(n+1)/2] if n is an odd number

The following examples utilize this equation.

Example 1

Using the block diagram shown in Figure 1, a system with N-version
software whose outputs go into a decision algorithm will be analyzed.
For this example, the N-version software will consist of five versions.
The reliability values for the five versions and the decision algorithm

are given in Table §.

Software Component

Reliability Value

Version
Version
Version
Version
Version
Decision Algorithm

[ 0 - WP RN g

0.77
0.82
0.65
0.91
0.89
0.997

Table 5. Reliability Values for the Software Components
in the Figure that Represents the General
Format for N-Version Software

LR R O AL Ao AL R I Vo e £ R Rk L i R

LR R ERE P R L IS PR RS IR b R RIS IS R

R 7l o o @ 4

-~

L e e A RN W P P P AU W NS U T e e W RS T WS ey Ty TR RN o W

NI RISV GNE I



“w

™

4-38

To determine the overall software reliability value for this
block diagram, the trdnsfer function for the N-version software, which
is dependent upon the number of versions (in this example n = §), must
first be determined. Hence, the transfer function for the N-version
software (NVS) is

NVS = [1 - (1-G162G3)(1-G1G2G4)(1-G1G2Gs5)(1-G16364) (1-61636s) x
(1-G)G465) (1-82G364) (1-G2G365) (1-62G465) (1-G36465)]

S

L.

By substituting in the appropriate reliability values, ié
n

NvS = 1 - [1-(0.77)(0.82)(0.65)][1-(0.77)(0.82)(0.91)] x Eﬁ
[1-(0.77)(0.82)(0.89)][1-(0.77)(0.65)(0.91)] x ky
[1-(0.77)(0.65)(0.89)](1~(0.77)(0.91)(0.89)] «x ;:;
[1-(0.82)(0.65)(0.91)][1-(0.82)(0.65)(0.89)] «x 59

[1-(0.82)(0.91)(0.89)][1-(0.65)(0.91)(0.89)]

= [1 - (1-0.41041)(1-0.574574)(1-0.561946)(1-0.4554585) x
(1-0.445445)(1-0.623623)(1-0.48503)(1-0.47437) x
(1-0.664118)(1-0.526435)]

= [1 - (0.58959)(0.425426)(0.438054)(0.544545)(0.554555) x
(0.376377)(0.51497)(C.52563)(0.335882)(0.473565)]

= 1 - 0.0005377 = 0.9994623

)
-

OB EXFERBER I VD ke it A ARl et S P D Py

NVS = 0.99945 -
By applying the software reliability model in Section 4.5,

Ly through Lp = 0

Gy = (0.99946) x (0.997) = 0.9964616
Gg through Gk = 0

Ay =1

a =1

L T O IR SV R R R TR AN A AN A AT AT F T AT e AN Tt Al S AN AR AT AN A A T e R R Y




il oo

DEEEFERI BERANST JRASENE) FUQRSEs!

x

o AXRIALIIT Lad o T,

'

o e
’

Jddd

PIOIS U B R,

= e s

.

N
.
IS

4-39

Therefore,

Relfability = w'”“?“)” x (1) . 0,9964616
1

Reliability = 0.99.

The probability of coincident errors (E) should be determined
and subtracted from the transfer function for the N-version software
to improve the accuracy of the relfability value of the N-version software

and the accuracy of the overall software reliability value. (Reference
Section 7.0.) For this example,

e« (3 (1-6.)3 + (D (1-6.)% + @) (=65
(3
The groups for \3/ would be

6162G3, G362G4, 616265, G)G3G4, G)1G36s, G164G5, 626364,
G2G3Gs, G2G4Gs, and G3G46s5,

with respective G| values being
G2, G4, G5, G4, G5, G4, G4, G5, Gg, and Gg.
The G values can be grouped as G2 + 6 x G4 + 3 x Gs.

(3)r
The groups for \ 4/ would be

G)G2G3G4, G1G2G365, 61626465, 61636465, and GaG364Gs,
with the respective G values being G4, Gs, G4, G4, and G4. This gives
4 x Gg + Gs.

5
The group for(s)* is 616pG364E5 with 6 * G4.

m e el ARt T EA WXLt rad RSO BT RS KXl tisd EeAldaleinind, Albdaceciolid iuicda

«w 2 eAAwe

‘
it}
R
{
1

I N L R N TP L Y i A “p e ‘_-\;., 1 s PR .4_"’-.". I IR O o ,1."_*6-“_-' '1“\'4-1\ QHA_‘I\N"‘HN -t -dﬂ,q.ﬂ_.ff"fr(\" )'('-\_'r-



[N T N NS

seb

4-4¢

Therefore,

E = (1-Gp)% + 6 x (1-Gg) + 3 x (1-65)3 + 4 x (1-Gg)* +
(1-65)* + (1-64)°
< a (1-0.82)3 + 6 x (1-0.91)3 + 3 x (1-0.89)% + 4 x (1-0.91)% +
(1-0.89)* + (1-0.01)5
= (0.18)3 + 6 x (0.09)3 + 3 x (0.11)° + 4 x (0.09)* +
(0.11)% + (0.09)°
= 0.005832 + 0.004374 + 0.003993 + 0.0002624 + 0.0001464 +
0.0000059
E = 0.0146137.

Subtracting E from the transfer function for the N-version software gives

NVS = 0.9994623 - 0.0146137 = 0.9848486
NVS = 0.98485.

L1 through Ly = 0

G = (0.98485) x (0.997) = 0.9818955
G2 through G = 0

a1 = 1

A =]

Hence, the adjusted Reliability value is

Reliability = °'981835§ x 1) . g 0818955
1

Reliability = 0.982.

Example 2

This example will evaluate the overall reliability for the
system shown in Figure 2. In this examp]é, the N-version software will
consist of four versions. Each of the outputs from the N-version software
are submitted to an acceptance test (the identical acceptance test is
used for all four versions), and then the outputs from the acceptance

S E A T IR I & N A A AT A e T T S N T T W W T ShIaTrTY




G iphgpgrain SAS S&ia.ﬂh‘«'xl;l..'a.‘,‘;d AL 1 FIVSINPT TUNTIENY IV Y

SN

IS

4-41

test are input to the decision algorithm. The reliability values for
each of the software components are given in Table 6.

Software Component Reliability Value

Version 1 ' 0.86

Version 2 0.79
Version 3 0.94
Version 4 0.68
Acceptance Test 0.98
Decision Algorithm 0.93

Table 6. Reliability Values for the Software Components
in the Figure that Represents the N-Version
Software with Acceptance Tests

First, the transfer function for the N-version software (NVS)
must be determined. In this example,

NVS = [1 - (1-G162G3)(1-G1G364) (1-6162G4) (1-6G26364)].
By substituting in the appropriate reliability values,

NVS = {1 - [1 -~ (0.86)(0.79)(0.94)][1 - (0.86)(0.94)(0.68)] x
{1 - (0.86)(0.79)(0.68)](1 - (0.79)(0.94)(0.68)1}

= [1 - (1-0.638636)(1-0.549712)(1-0.461992)(1-0.504968)]
= [1 - (0.361364)(0.450288)(0.538008)(0.495032)]
= 1 - 0.0433368 = 0.9566632

NVS = 0.95666.

-

By applying the software reliability model in Section 4.5,

Ly through L, = O

6y = (0.95666) x (0.98) x (0.93) = 0.8718999
G2 through Gg = 0

ap =1

A =

T PR

-

\. ":“' PP AP

| % R Ll o

LN VP L LARL” R T

v .

——— AT

rervs R R NN TP T o LT )

-~y



4-4

Therefore,

(0.8718999) x (1)
(1)
Reliability = 0.872.

Reliability =

= (0.8718999

The probability of coincident errors (E) for this example is
A 4 4
e« (3 (1-6)% + (4 (1603 + (8)* (1-ep)’.
&\ »
The groups for( 2) are
G162, G163, GyGg, G263, G264, and G3Ga.

Their respective G values are Gy, G3, Gy, G3, G2, and G3. These values
can be grouped as 2 x G} + 2 x G2 + 2 x G3.

4

The groups for (3). are GjGpG3, G1G26G4, G1G3G4, and G2G3G4.
with the G values G3, G}, G3, and B3, respectively. This gives Gy +
3 x G3. (4)*
The group for \4/ 1is G}G2G3G4 with G = G3.
Hence,

2 x (1-67)2 + 2 x (1-G2)2 + 2 x (1-63)% + (1-61)° +

3 x (1-G3)3 + (1-63)4

2 x (1-0.86)2 + 2 x (1-0.79)% + 2 x (1-0.94)% + (1-0.86)3

+ 3 x (1-0.94)3 + (1-0.94)* )

2 x (0.14)2 + 2 x (0.21)2 + 2 x (0.06)% + (0.14)° + 3 x
(0.06)° + (0.06)%

0.0392 + 0.0882 + 0.0072 + 0.002744 + 0.000648 + 0.00001296
E = 0.1380049.

m
]

LT P .l FE U LI T LN S o ) TP T IN JIAT DI NI R el e Tt
STt amp mATRA At e T e e e T e 2 AT R A T P T T A A T o R B TR




4-43

Re-evaluating the relfability value for the N-version software and the
overall software reliability value give

NVS = 0.9566632 - 0.00001296 = 0.9566503
NVS = 0.95665 '
Ly through L, = 0

6y = (0.95665) x (0.98) x (0.93) = 0.8718908
G2 through 6¢ = 0

a1 = 1

a =1

Therefore, the adjusted reliability value is

Reliability = —2:8718908 x 1 4 g91g008
B
Reliability = 0.872.

Example 3.
This example will be more complicated, fnvolving N-version
software in which only x verions are used at a time (reference Figure
3). For this example, the number of versions in the N-version software
will be nine. Three of the versions will be run at a time, and their
outputs sent to the decision algorithm. If the decision algorithm fails,
then the system will rollback, and the next three versions will be run.
This cycle will continue until the decision algorithm passes or until
all of the versions in the N-version software have been run. Table 7
gives the reliability values for each of the components jn this example.
First, the transfer function for the N-version software in
which only x versions are used at a time (NVSx) must be determined.
The transfer function is a combination of the equations in Section 4.5
for N-version software and a recovery block since the usage of x versions
at a time is N-version software, but applying rollback and going through
another x versions incorporates the concept of a recovery block. Hence,
the transfer function for the N-version software in which only x versions
are used at a time 1is

F P A S [ T O S Y TE N N RN b SRR A T et o e TR
R AR N TS e T A S L T e T T A O T TR T T e T T

RS Y 2T XERANS Lo =Y o d L Lo dazhd o

Taasas

s J

.

&£a
a A

e —— % A e ISR E N BEPL L LV 2 0223 s S EW > APV Y LS,



R

y]

Table 7.

NVSx

4-44
Software Component Reliability Value
Version 1 0.84
Version 2 0.71
version 3 0.66
Version 4 0.87
version % 0.92
version 6 0.90
Version 7 0.73
Version 8 0.85
version 9 0.78
Decision Algorithm 0.91
Rollback 0.9¢

Reliability Values for the Software Components
in the Figure that Represents the N-Version

Software in Which Only x Versions are Used

at a Time

= [1 - (1-6162)(1-6163)(1-G2G3)] +
{1-[1-(1-G162)(1-6163)(1-G263)]} x
(1-(1-G4G5) (1-G4Gg) (1-GsGg)] +
{1-[1-(1-G162)(1-63G3)(1-6263) ]} «x
{1-[1-(1-G465) (1-G4Gg) (1-G5Gg) I}
[1-(1-G76g)(1-67Gg)(1-GgGg)].

By substituting in the appropriate reliability values for this exampie,

NVSx = {1-[1-(0.84)(0.71)](1~(0.84)(0.66)3[1~(0.71)(0.66)]}

+ [1- {1-[1-(0.84)(0.71)][1-(0.84)(0.66)][1-(0.71)(0.66)1} ]
x {1-[1-(0.87)(0.92)][1-(0.87)(0.90)1(1-(0.92)(0.90)1}

+ [1-{1-[1-(0.84)(0.71)1[1~(0.84)(0.66)1[1-(0.71)(0.66)1} ]
x [1-{1-[1-(0.87)(0.92)[1-(0.87)(0.90)1[1-(0.92)(0.90)]} ]
x-£1-[1-(0.73, 0.85)](1-(0.73)(0.78)1[1-(0.85)(0.78)]}

B A N
a Tl w

- €

LRI UL T
LR 4

K2

TANSBALrLr LAAARANASN

-_—- . o oam g



4-45

-

1 )','

= [1-(0.4036)(0.4456)(0.5314)] + {1-[1~(0.4036)(0.4456)

(0.4456)(0.5314)]} x {1-[1-(0.1946)(0.217)(0.172)]} x
[1-(0.3795)(0.4306)(0.337)]

Li-‘-:‘l"t“l“&’:lﬁ% 'la"h s ‘x ;:.-'IH_-I. .'“l;) ) l‘ [ DN

‘a‘.'“) ‘.' ‘)'.I.ﬂ

= 0.9044309 + (1-0.9044309)(0.9925501) + (1-0.9044309) x
(1-0.9925501)(0.9449299)

‘j = 0.9044309 + 0.0948571 + 0.000672771

< NVSx = 0.9999608
X \
l?E By applying the software reliability model,

|

< Ly = (0.9999608) x (0.91) x (1-0.99) = 0.009099643

Section 4.5.)]
Lo through Ly = 0
Gy = (0.9999608) x (0.91) = 0.9099643
G2 through Gk = 0
a1
A =1~ 0.009099643 = 0.9909004

Sah sV ppge s nt W ppl Ll

Therefore,

3 Reliability = —0.3099643) x (1) . 4 4183507

‘q; (0.9909004)

o Reliability = 0.918.

=

e

A

‘; T ¢ st '} y * i ._-1:_‘:},‘_. A T s ”\-" LAy Y

I —

= [1-(1-0.5964)(1-0.5544)(1-0.4686)] + {1-[1-(1-0.5964) x
(1-0.5544)(1-0.4636)1} x [1-(1-0.8004)(1-0.783)(1-0.828)]
+ {1~[1-(1-0.5964)(1~0.5544)(1-0.4686)1} x {1-[1-(1-0.8004) x
(1-0.783)(1-0.828)]} x [1-(1-0.6205)(1-0.5694)(1-0.663)]

X
(0.5314)]} x [1-(0.1996)(0.217)(0.172)] + {1-[1-0.4036) «x

= (1-0.095569187) + [1-(1-0.095369187)] x (1-0.0074498704)
+ [1-(1-0.095569187)] x [1-(1-0.0074498704)] x (1-0.0550701)

[The transfer function for rollback is (1.0 - reliability value). (Reference

.
R Y

Caa A W% Ne2sl20 KD

| 4 s i S

) 5% S0 S e

L

LAARA NS WOCLCULLY MCCTLAAY

Y oW W W SN

_taTva

[

[N )



4-46

The accuracy of the hybrid N-version software reliability value
will be affected if not all of the n versions are used. (Reference Section
6.1.1.) For this example, it is assumed that only six of the nine versions
are actually used. This gives

NVSx = [1-(1-G162)(1-G)G3)(1-GpG2)] +
{1-[1-(1-6162) (1-6163)(1-G2G3) 1} x
[1-(1-G465) (1-GaGg) (1-Gedg)]

= 0.904430¢ + 0.0948571

NVSx = 0.999288

Ly = (0.999288) x (0.91) x (1-0.99) = 0.009093521
L2 through Ly = 0

Gy = (0.999288) x (0.91) = 0.90935208

Go through Gk = 0

A1=1

& = 1-0.0090935 = 0.9909065

Hence, the overall software reliability value with n = 6 is

(0.90935208) x (1) . 0.9176972
(0.9909065)
Reliability = 0.9177 with n = 6.

Reliability =

It is more difficult to determine the probability of coincident
errors for this example. For instance, only the coincident errors within the
groups of x versions need to be analyzed. The coincident errors between
all of the n versions are irrelevant. Then, since this example combines
the equations for N-version software and a recovery block, the probability
of coincident errors must be subtracted only from the N-version software.

- Arra w om A R AE EOREE ANy e I



-

YRR SEEFFPIE SFNW

B “.“j' o‘a"aia'}‘}'.“')l."]. .{j‘)‘i']‘l

. _ YTV vy

PVPARY YR Y Y VRN NP

4-47

The probability of errors for the first group of three versions
is

gy« (2 (1-6,)2 3 (1-6,)°.

3

The groups for SZ)* are GGz, G163, and GoG3, with G = 2 x G + Gy.
»

The group for (3 is G)G2G3 with G = Gj.

Hence,

Ey = 2 x (1-61)% + (1-62)2 + (1-61)3
= 2 x (1-0.84)2 + (1-0.71)2 + (1-0.84)3
= 0.0512 + 0.0841 + 0.004096

E; = 0.139396.

The probability of errors for the second group of three versions
is

Ep = (2 -60)2 + (3" (100

3
The groups for gi)* are GgGs, G4Gg, and GsGg, with G = 2 x Gg + Gg.
"
The group for (3 is G4GsGg with G = Gs.
The value for Ez is

Ep = 2 x (1-G5)° + (1-6g) + (1-Gg)°
= 2 x (1-0.92)% + (1-0.90)% + (1-0.92)3
= 0.0128 + 0.01 + 0.000512

E; = 0.023312.

The probability of errors for the third group of three versions
is

£3 + (2" (1-6,)2 L3 (1-6y)°.

P AL LA AR AN YW W2 EAA2"VWW R | & & 35 % SR IS 35 5y

am W O B P = _s_wmg - m R

- ;e



1i Wi}

T BITiAEr U

SRS IR IR ISVEQC Y ENK

I SENRKRRPY 14

PRI
P S

—_—— e & AL J,"b“‘J‘I -

Lo

4-48

3
The groups of (2)* fos E3 are GyGg, G7Gg, and Gglg, with Gy = 2 x Gg
\ 4
+ Gg. The group of (3) is GyGgGe with G = Gg.
Hence,

E3= 2 x (1-0.85)% + (1-0.78)% + (1-0.85)3
= 0.045 + 0.0484 + 0.003375
E3 = 0.096775.

Considering these probabilities when the transfer function
for the N-version software (in which only x versions are used at a time)
is calculated gives

NVSx = [1-(1-6162)(1-G1G3)(1-GpG3)-E1] +
{1-[1-(1-6162)(1-G163) (1-G2G3)-E1]} x
[1-(1-G46s)(1-GaGg)(1-G5Gg)-E2] +
{1-[1-(1-G162)(1-6363) (1-6263)-E1]} x
{1-[1-(1-G4Gs5) (1-G466) (1-€566)-E2]} x
[1-(1-676g)(1-G7Gg)(1-GgGg)-E3]

= (1-0.095569187 - E;) + [1-(1-0.095569187 - Ej)] x
(1-0.0074498704 - Ep) + [1-(1-0.095569187 - Ej)] x
[1-(1-0.0074498704 - E»)] x (1-0.0550701 - Ej3)

= (0.9044309 - Ey) + (1-0.9044309 + E;)(0.9925501 - Ep)
+ (1-0.9044309 + E;)(1-0.9925501 - E2)(0.9449299 - E3)

(0.9044309 - 0.139396) + (0.0955691 + 0.139396)(0.9925501

- 0.023312) + (0.0955691 + 0.139396)(0.0074499 + 0.023312)
x (0.9449299 - 0.096775)

0.7650349 + (0.2349651)(0.9692381) + (0.2349651)(0.0307619)
x (0.8481549)

0.7650349 + 0.2277371 + 0.0061304
NVSx = 0.9989024.

-— - e m e are RET P L L UP_I_ O™ WA V0T BRI



a——

. St e - -

et o  w —

- - o —

- e e o ema e =

4-42

The overall software reliability value with the coincident errors considered
is determined as

L1 = (0.9989024) x (0.91) x (1-0.99) = 0.0020200118
L2 through Lp = 0

61 = (0.9989024) x (0.91) = 0.9090012

Gy through Gk = 0

4 =1

4 =1 -0.0090900118 = 0.990°1

Therefore,

Reliability = —0:8090012) x (1)
(0.99091)
Reliability = 0.9173.

= 0.91733¢8

Example 4.

The hybrid N-version software format, shown in Figure 4, will
be evaluated in this example. In this example, the N-version software
will consist of three versions. The outputs of these versions are fed
into a decision algorithm. If the decision algorithm fails, then the
software will rollback and run through the three versions again. However,
this time the outputs of the versions are input to an acceptance test
prior to entry to the decisfon algorithm. For this example, it is assumed
that the reliability values for the individual software components are
as given in Table 8.

The transfer function for the N-version software is

NVS = 1-(1-G362)(1-616G3)(1-G2G3)
= 1-{1-(0.67)(0.78)]{1-(0.67)(0.89)][1-(0.78)(0.89)]
= 1-(1-0.5226)(1~0.5963)(1-0.6942)
= 1-(0.4774)(0.4037)(0.3058)

NVS = 0.94106428.

N RN BT RN . IRRRRIRY 1 VP LARRA" VAEAN o LI BRI RS, o4 F AR LRI AR, 5 ad L]

SR N Y VLY,

S T

SDIW NS>



IR R B

T8..8.10

T
5

mIliliLix

iad il

4-50

Software Component

Reliability Value

Version 1
Version 2
Version 3
Acceptance Test
Decision Algorithm
Rollback

Table 8. Reliabfility Values for the Software Components
in the Figure that Represents the N-Version
Software in Which the Outputs are Subjected to
an Acceptance Test if the Decision Algorithm

Fails

The variables of the software reliability model are

Closed Loop #1 = (0.94106428) x (0.88) x (1-0.98) = 0.01656273
Closed Loop #2 = (0.94106428) x (1-0.86) x (0.88) x (1-0.98)
= 0.0023187824
(Remember that the transfer function of the equivalent block in a feedback
or feed-forward path is (1.0 - reliability value).]
Tl = Closed Loop #1 + Closed Loop #2 = 0.018881512

IL2 through Il = 0

Gy = (0.94106428) x (0.88) = 0.82813657
G2 = (0.94106428) x (1-0.86) x (0.88) = 0.11593912

G3 through G = 0
Ay =1
a2 =1
43 through ag = 0

a4 =1 -1IL;y=1-0.018881512 = 0.981118488

Therefore,

Reliability = (0.82813657 x 1) + (0.11593912 x 1) , 0.9622444

Relifability = 0.962.

(0.981118408"

XA

P eSS T

SN R R 2SR AR NN

e h e m - e — - g _Sh AD _Sgeege [y W Wl



IRJLL

)

]

4

AAYEEY  *ALS

Y OFRRULS Y RECOUSNY PREILLL,  ULAAAD .

b,ﬁ{!

-

EREERNLE

i

120388

(a rs

TS ]

A

i

R

PRI

‘-:‘r-ﬂ

4-5]

To improve the accuracy of the software reliability model,
the probability of coincident errors (E) might be considered. (Reference
Section 7.0.) For this example,

g (3> (1-6)% + Gr (1-6)°.

The groups for (g)* are GjG2, G163, and G2G3 with respective G values
of G2, G3, and G3, or G2 + 2 x G3. The group for ( " is G1G2G3 with
6, = G3.

Thus,

E = (1-62)% + 2 x (1-63)% + (1-63)°
= (1-0.78)% + 2 x (1-0.89)2 + (1-0.89)°
= (0.22)2 + 2 x (0.11)2 + (0.11)3
= 0.0484 + 0.0242 + 0.001331

E = 0.073931.

By subtracting the probability of coincident errors from the N-version
software transfer function, a conservative value of the reliability value
for the N-version software and the overall software reliability value

can be determined.

NVS = 0.94106428 - 0.073931 = 0.86713328

Closed Loop #1 = (0.86713328) x (0.88) x (1-0.98) = 0.015261546

Closed Loop #2 = (0.86713328) x (1-0.86) x (0.88) x (1-0.98)
= 0.0021366164

tLy = 0.015261546 + 0.0021366164 = 0.017398162.

tLy through tlp = 0

G = (0.86713328) x (0.88) = 0.76307729

G2 = (0.86713328) x (1-0.86) x (0.88) = 0.10683082

G3 through Gk = 0

a1 = 1

A2 = 1

A3 through ax = 0

4 =1-ZIL;=1-0.017398162 = 0,98260184

[ — 'S -



4-52

Reliability = _(0.76307729 x 1) + (0.10683082 x 1) 0.88531089
(0.98260184)

Raliability = 0.885.

Therefore,

T NSy Tty T R THTTATA AT o TRET T

- il Tt FETFELL N OO NN N
agsn RRRRRNT 47y SN S hst i d W P AWVYY | AivH )




2l I I R O

LB Bt
PO B

TTHIET -

!v o

RRLRAR I

AL IR R

—

[t = e

4-53

APPENDIX I1
RECOVERY BLOCK CALCULATIONS

The transfer function for a recovery block is dependent upon the

number of alternates (n) that are usad. This transfer function is calculated

with the following equation:

Gy + (1 -61)G2 + (1 - 81)(1 - G2)G3 + ....
with G; = the reliability value for alternate i and
=1, 2, %...n.

The examples below demonstrate the determination of the overall software
reliability value with this equation and the software reliability model.

Example 1

Figure § shows the general format of a backward recovery block.
For this example, the number of aiternates will be four. The reliability
value for each of the software components is listed in Table 9.

Software Component Reliability Value
Alternate 1 0.86
Alternate 2 0.75
Alternate 3 0.79
Alternate 4 0.84

Acceptance Test 0.91
Rollback 0.93

Table 9. Relijability Values for the Software Components
in the Figure that Represents the General
Format of a Backward Recovery Block

AEAEWERR S FII Py Fg TN Nl thad 2. ob b

P PT RS PN IFFES | WU PR ESS

AMRMw_ - o o _=_ "

e madd e e

-k

21 & 2 ams BoeZTz oo



_IJ-,‘-'."L;‘_LLK"‘-‘ J‘Al 2 Jl i-t P ¥ 11,1. .r! : ;

SERAAATEV Gt S ERR LY IRRRR AR ) KXRFT TR SRS

R

AP

[ RN ) 1
P f,",{.',..|

4-54

The transfer function for the recovery block (RB) is

RB = Gy + (1 - G1)G2 + (1« Gy)(1 - G2)G3 +
(1 - 61)(1 - G2)(1 - G3)Gq

= 0.8 + (1 - 0.86)(0.75) +# (1 - 0.86)(1 - 0.75)(0.79) +
(1 -0.86)(1 - 0.75)(1 - 0.79)(0.84)

= 0.86 + (0.14)(0.75) + (0.14)(0.25)(0.79) +
(0.14)(0.25)(0.21)(0.84)

= 0.86 + 0.105 + 0.02765 + 0.006174
RB = 0.998824

The variables of the software reliability model will be

Ly = (0.998824) x (0.91) x (1.0 - 0.93) = 0.0636251

[Recall that the transfer function our rollback is (1.0 - reliability value).

This was defined as such in Section 4.5.]

L2 through Lp = 0

Gy = (0.998824) x (0.91) = 0.9089298
Gy through Gg = 0

a1 =1

42 through ag = 0

4 = 1-0.0636251 = 0.9363749

Therefore,

Reliability = (0.9089298) x (1)
(0.9363749)

Reliability = 0.97.

= 0.9706901

Wy x

[ JEC R R 2



4-55

As was discussed in Section 6.1.2, 1f only two of the alternates

are actually used, although the recovery block supplies four alternates,
this will decrease the reliability of the recove'y block and consequently
decrease the overall software reliability. The following calculations show

this.

Hence,

Example 2

6. This exampla will evaluate the overall software reliability of this figure

RB e Gy + (1 - G1)Gz = 0.86 + (1 - 0.86)(0.75)
= 0.86 + 0.10h =20.965

Ly = (0.965) x (0.91) x (1 - 0.93) = 0.0614705
Lz through Lp = 0

Gy = (0.965) x (0.91) = 0.9089298

Gy through Gx = 0

a4y =1

42 through 4 = 0

4 =] -0.0614705 = 0,9385295

Reliability = —(0:9089298) x (1) . 4 9684616
(0.9385295)

Reliability = 0.968 when only two of the alternates are used.

The general format of a forward recovery block is shown in Figure

(six alternates will be used: one primary alternate and five additional
alternates), with the relfability values assigned as shown in Table 10.

The transfer function for the recovery block (RB) is

R8 = Gy + (1 - Gj)G2 + (1~ G1)(1 - G2)G3 +
(1 - 6y)(1 - G2)(1 - G3)Gg +
(1 - G1)(1 - G2)(3 -~ G3)(1 - G4)Gs +
(1 - 67)(1 - G2)(1 - G3)(1 - G4)(1 - Gg)Ge

. e T W WS

. —— e — - . R & s . e . -



| 4-56

; Software Component Reliability vValue
|

. Alternate 1 0.81
. Alternate 2 0.72
: Alternate 3 0.73
; Altarnate 4 0.74
Alternate § 0.8%
Alternate 6 0.86
Acceptance Test 0.97
Rol1back 0.98
Roil=-Forwara 0.89

Table 10. Reliability Values for the Software Components

in the Figure that Represents the General
Format of a Forward Recovery Dlocxk

P

0.81 + (1 - 0.81)(0.72) + (1 - 0.81)(1 -0.72)(0.73) +

(1 -0.81)(1 - 0.72)(1 - 0.73)(0.74) +

(1 -0.81)(1 - 0.72)(1 - 0.73)(1 - 0.74)(0.85) +

(1 -0.81)(1 - 0.72)(1 - 0.73)(1 - 0.74)(1 - 0.85)(0.86)

0.81 + (0.19)(0.72) + (0.19)(0.28)(0.73) +
. (0.19)(0.28)(0.27)(0.74) + (0.19)(0.28)(0.27)(0.26)(0.85) +
| (0.19)(0.28)(0.27)(0.26)(0.15)(0.86)

0.81 + 0.1368 + 0.038836 + 0.01062936 + 0.003174444 + 0.00048176856

0.99992157256
RB = 0.9999216.

With the software reliability model,
L1 = (0.9999216) x (0.97) x (1 - 0.98) = 0.019398479

[Note that the transfer function for rollback is (1.0 - reliability value).)
L2 through Lp = 0

6y = (0.9999216) x (0.97) = 0.96992395
G2 = (0.9999216) x (0.97) x (1 - 0.98) x (1 - 0.89) = 0.0021338327




o P L AL B B <t e e W PP W IR W W N W N WY e v RSB I TR SN T E e v W ST S WA TR AW LT I WM TROTWR TSmO St e e e e

[ ]

4-57

PN A XA

[Remember that the transfer function for rollback and roll-forwara are (1.0
- reliability value). This was discussed in Section 4.5.)

--e e -

G3 through Gk = O
Ay =1
Az!l
43 through A = 0
& =1 - 0,01939847¢ = 0.98060152 ‘

Therefore,

Reliability = (0.96992395 x 1) + (0.0021338327 x 1)
(0.98060152)

= (0.97205778)/(0.98060152) = 0.99128725
Relijability = 0.991.

14 b4

Discussion of the Results:

This result is as expected. With just the n alternates, acceptance
test, and rollback, the overall reliability would be

IR EE

Reliability = (0.9999216)(0.97)
1 - (0.9999216)(0.97)(1 - 0.98)

Reliability = 0.9891112 = 0.989.

N ' N )

The roll~forward should increase this reliability value, as it does.

'SEEBYER]

To evaluate the effect on accuracy when less than the n alternates
(in this example n = 6) are actually used, the relfability of this example
will be evaluated withn = 3, n = 4, and n = 5,

For n = 3,
RB

FYPN T NN

G; + (1~ G1)Gz2 + (1~ Gy)(1 - G2)G3

0.81 + (1 - 0.81)(0.72) + (1 -~ 0.81)(1 - 0.72)(0.73)
0.81 + 0.1368 + 0.038836

0.985636

RB

(SE RN ]
»

4k



Y1 RRSSRTYY _USPRNSIN b

2 A li L V‘a”\.“‘m T:'.

Ladaib

v
y

-"."rn;a'}:iilj J

RTLIDE UYE PV SR

PR A A

., ...

.

R LAV

t

4-t8
Using the software reliability model,

Ly = (0.985636)(0.97)(1 - 0.98) = 0.019121338

Lo through Lp = 0

Gy = (0.985636)(0.97) = 0,95606692

Gy = (0.985626)(0.97)(1 ~ 0.98)(1 - 0.89) = 0.0021033472
G3 through Gg = 0

8 =1

1

23 through i = 0

4 =1 -0.019121338 = 0.98087866

gives  Reliability = —(0:95606692 x 1) + (0.0021033¢72 x 1)
(0.98087866)

= 0.97684893

Reliability = 0.977.

For n = 4,
RB = 0.81 + 0.1368 + 0.038836 + 0.01062936
RB = 0.99626536

Using the software reliability model,

Ly « (0.99626536)(0.97)(1 - 0.98) = 0.019327547

Lz through Lp = 0

Gy = (0.99626536)(0.97) = 0.9663774

G = (0.99626536)(0.97)(1 - 0.98)(1 - 0.89) = 0.0021260303
G3 through G = 0

8y =1

s 1

43 through &g = 0

8 =1 - 0.019327547 = 0.98067245

gives  Reliability = —(0:9663774 x 1) + (0.0021260303 x 1)
(0.98067245)

= 0.98759115

Reliability = 0.988.

"ALMA YRS N P

L T AN YW RRWEI I B

" e e ma - T S B

PR -




TR R LI

.3l

A2 HIMBLRALAR 10

bauidlsd.

YRR XN

aaaitAlS

4-59

For n = §,

R8 = 0.99626536 + 0.003174444
RB = 0.999439804

Using the software reliability model,

gives

Ly = (0.999439804)(0.97)(1 - 0.98) = 0.019389132

L2 through L, = 0

G; = (0.999439804)(0.97) = 0.96945661

62 = (0.999439804)(0.97)(1 - 0.98)(1 - 0.89) = 0.0021328045
G3 through Gg = 0

a1 =1

82 =1

43 through &g = 0

4 =11 -0.019389132 = 0.98061087

Reliability = (0.96945661 x 1) + (0.0021328045 x 1) 0.99080017
(0.98061087)

Reliability = 0.991.

The following table compares the reliability values that are obtained

by using less than n alternates in this example.

Number of Recovery Block Overall Software
Alternates Used Reliability Value Reliability Value
n=3 0.98564 - 0.977
n=4 0.99627 0.988
n=5§ 0.99944 0.991
n=e6 0.99992 0.991

Table 11. Accuracy Effects on This-Example When Less
Than n Alternates are Actually used

I JRO%

2y u

'.'!
A
Y

PL O TS g WRBITIVA

I-‘f‘..



4-60

Discussion of the Results:

This s as expected. As stated in Section 6.1.2, by actually using
fewer than the n alternates, the reliability values for the recovery block
and the overall software will generally decrease. However, as was seen in
the case with n = 5, by not using the sixth alternate (which has a reliability

value of 0.86 in this example), an extremely slight increase in reliability
was found.

Example 3

Figure 7 shows a possible variation of a forward recovery block.
For this example, the number of alternates will be three. The reliability
value for each of the software components is listed in Table l2.

Software Component Reliability Value

Alternate 1
Alternate 2
Alternate 3
Acceptance Test
Any Process
Rol1lback
Roll-Forward

O0O00O0O0O00
L] ] L] - . - L]
W O WO W W~
NN OOO

Table 12. Reljability Values for the Software Components

in the Figure that Represents a Variation of
the Forward Recovery Block

The transfer function for the recovery block (RB) 1s

RB = G) + (1 - G1)G2 + (1 - G1)(1 - G2)G3

0.80 + (1 - 0.80) x (0.70) + (1 - 0.80) x (1 - 0.70) x (0.90)
0.80 + (0.20 x 0.70) + (0.20 x 0.30 x 0.90)

0.80 + 0.14 + 0.054

R8 = 0.994.




4-61

The variables of the software reliability model are

Ly = (0.994) x (0.98) x (1 - 0.95) = 0.048706

L2 through L, = 0

Gy = (0.994) x (0.98) x (0.97) = 0.9448%64

Gz = (0.994) x (0.98) x (1 - 0.95) x (1 - 0.96) = 0.0019482
G3 through Gk = 0

01

YD

&3 through ¢ = 0

& =1-1L;=1-0.048706 = 0.951294

Therefore,

Reliability = —(0:9448964 x 1) + (0.0019482 x 1)
(0.951294)

= 0.99532279

Reliability = 0.995.

To demonstrate the effect on accuracy if less than the n alternates
(in this example n = 3) are actually used, the reliability of the recovery
block and overall software reliability value will be re-calculated for
ne=1landn-=2

For n =],
RB = 0.80.
With the software reliability model,

Ly = (0.80) x (0.98) x (1 - 0.95) = 0.0392
L2 through Lp = 0

G) = (0.80) x (0.98) x (0.97) = 0.76048

Gy = (0.80) x (0.98) x (1 - 0.95) x (1 - 0.96) = 0.001568
G3 through Gk = 0

4 =1

8 =1

A3 through a¢ = 0

A =]1-11=1-0.0392 = 0.9608



......

"-62

Reliability = —0:76048 x 1) + (0.001568 x 1)
(0.9608)

= (0,7931391
Reliability = 0.793.

For n = 2,
RB = 0.80 + 0.14 = 0,94,
With the software reliability model,

Ly = (0.94) x (0.98) x (1 - 0.95) = 0.04606

L2 through Lp = 0

Gy = (0.94) x (0.98) x (0.97) = 0.823564

G2 = (0.94) x (0.98) x (1 - 0.95) x (1 - 0.96) = 0.0018424
G3 through Gk = 0

41 =1

bo 2]

43 through &g = 0

4 =1-1L;=1-0.04606 = 0.95394

Reliability = (0.893564 x 1) + (0.0018424 x 1)
(0.95394)

= 0.93864017

Reliability = 0.939.

Table 13 compares the reliability values of the recovery block
and the overall software reliability values that are obtained by using all
or less than the n alternates in this example.

Number of Recovery Block Overall Software
Alternates Used Reliability Value Reliability Value
n=1 0.80 0.793
n=2 0.94 0.939
n=3 0.994 0.99%

Table 13. Comparison of Reliability Values When Less
Than n Alternates are Actually Used

. M et e e s e

- _a [F 0 STy W W W | o @ 4



4-63

(This page left blank intentionally)

awm.r R R FT A RS WRAS S AN | & & W |

-—— W@



|
[
e

1
RIS
SRR Lo M :'

e

”.‘f‘ fl.?"—-.i

"

»

‘n.if H

|
e

|
|

A

¢
|

H

e
A e e
CLR AR Z WS Ta 22 Jein

@
»

EIERESPAIAS I A

4-64

APPENDIX 111
FEEDBACK LOOP CALCULATIUNS

For basic feedback loops such as those shown in Figures 3, 4, and
5, the ideal software reliability value of the individual blocks and overall

software reljability is 1.0.

e k=3 B X

with y s +1 or -1

— <§%§> —_— | G} r_---. Go
)

[

Figure 12. Basic Feedback Loop

—~NCcC U4 O

With an original block diagram of the form

the block diagram transformation to eliminate a feedback loop gives the equiva-
lent block diagram of the form

-—d £ O X

6162

1 - (y) x (6162H)

Figure 13.

Basic Feedback Loop Equivalent

-~ CO

''''''''

L o S I

-



“a

A
': l‘l’l

¥

artsd

&

v o

xR "

1
)

1.

a8 A

|

%) JAIRRAA

¥

v

>

SAabasdiLy A0S

11111
JI‘)‘)‘J

.J;&.Jl}k}lp ﬁ 5

v

dosans]

$

4-65

If it is a negative feedback loop, the equivalent transfer function
is:

6162
1 + GyGoH

With G} = 1.0, G2 » 1.0, and H = 1.0, the overall reliability value would

be 0.5, which is undesjrable. It fs desired that the overall software rel’abflity
and individual block reliability values be 1.0. With the negative feedback

loop and these goals, there are three cases to be evaluated.

Negative Feedback Loop, Case 1:

G162

Want: 1 ® e

1 + GjGH
If: Gy =1.0andH=1.0

Then: 52 = 1.0 or 1+ G2 = Ga.
1+ G2

Conclusion: This is invalid.
Negative Feedback Loop, Case 2:

616
Want: 1.0 = _ 12

1 + G1G2H
If: Gz = 1.0 and H = 1.0
Then: 1+ G) =G

Conclusion: This is invalid.

- ® W e & . _f . e "m A A s m 4 8 a

s

T Y N )



WRRRIODS PITAARY - [CURSAE) RRVEERS SOSIRPPS SOpP

s e v

P R s s T e
S i e DR T A RAA VSAAS TR

YT PP N Y

4-66
Neoative Fesdback Loop, Case 3:
Want: 1.0 = _E_G_Z____
1 + GyGpH
If: Gy = 1.0 and G2 = 1.0
Then: _ 1 210 or 1+H=1

1+H

Conclusion: H = Q.

If it is a positive feedback loop, the equivalent transfer function
is:

G162
1 - GjGaH

As G} => 1.0, G2 => 1.0, and H => 1.0, the overall reliability value approaches
+ =, Again, it is desired that the overall software reliability and individual
block reliability values be 1.0. There are three cases to be evaluated with
the positive feedback loop.

Positive Feedback Loop, Case 1:

6162

100 = —————

1 - G1GzH

Want:

I1f: Gy = 1.0 and H = 1.0

6
Then: 2 = 1.0 or 1-Gp=062 or G2 =0.5

1-0G2

Conclusion: This is undesirable.

....................................................

-

B ‘e

T A P e AW o w



L4

[P SEITR LAY SUPS AU L VUSRS

]

v G NN AN A f AT R e e T T AL AT T e

e
-

o S e

PIVIvI N

i I

Py

- .
ke K

A

-

P

T S e e AL

4-67
Positive Feedback Loop, Case 2:
6,6
Want: 1.0 = 152
1 - G16z#
If: G2 =1.0and H=1.0
G
Then: =10 or 1-Gy=G; or G=0.5

1-0G;
Conclusion: This is undesirable.

Positive Feedback Loop, Case 3:

6;6
Want: 1.0 = 192

1 - G3GoH
I[f: Gy = 1.0 and G2 = 1.0

Then: 1 =10 or 1-H=1
l1-H

Conclusion: H = 0.

By comparing the results of the positive and negative feedback
cases (since it is desired that the software relfability model should accommodate
both of these options), it is obvious that the transfer function of H must
ecuat z¢ro. Therefore, the transfer function of the equivalent block in
any feedback path is (1.0 - relfability value).

a' s ST Y YR AR ETR™ LR A_&_

» cwmr m Y R B S S waur 4 G BB

L e e o .



4-68

APPENDIX IV
FEED=-FORNARD CALCULATIONS

Figures 6 and 7 are examples of block diagrams involving feed-forward
paths. In an ideal situation, the reliability value of the individual blocks
(G1, G2, G3,...Gy) and the overall software reliability (R) are 1.0. It
1s important to remember that reliability 1s defined such that 0 < Gy, G2,

G3s...6ps» R< 1.0. Figure 14 shows the block diagram for a basic feed-forward
path.

z d

N T

T T
— G2 I

Figure 14. Basic Feed-Forward Path

A block diagram transformation to eliminate the feed-forward loop
gives the following equivalent block diagram.

—_,E O
—CC'U—'!CO

Figure 15. Basic Feed-Forward Path Equivalent




"'." 4 . &‘JL'L*A"."}..!I & } lu

.
»

L

1 ") []
lu,.k)‘)l ElJld“ P

i de A A i b AL b b, B, BELLALL L PRRLLL S (L T

4-69

Ideally, if the relijability value of the individual blocks {s 1.0,
then the overall reliability should be 1.0. Therefore,

want: 1.0 = Gy + G2
If: Gy = 1.0
Then: G2 =0 or 1.0 = 1.0+ (1.0 - Gp)

Conclusion: The transfer function of the eguivalent block in any
feed-forward path is (1.0 -~ reliability value).

-y e

~
“u
\
3
2!
K
§
L
~
[
3
.1
-
:.
.l
,5'

TR R A AN ]

“AAANANY X2

Pl > e @Y

AR A i ]



 r e
M '
IJJ g

-

.,
)
- 4

e AASTLH

e Sl
Ry PP )
efala I s & 2 I A s

cm e
RN D

TP E I el o P P NEP 2 o o g8 S8 S

4-70

APPENDIX V

ANALYSIS OF SCOTT'S RECOVERY BLOCX RELIABILITY MODEL

In Scott's recovery block reliability model, the variables are

defined as:

P(C;) = the probability of alternate i executing correctly;
P(1j) = 1 - P(Cy)s
P(CR) = the probability of the recovery program executing correctly;
P(IR) = 1 - P(CR)s
P(Ay) = the probability of accepting an incorrect result;
P(Ry) = the probability of rejecting an incorrect result
=1 - P(A1);
P(R¢) = the probability of rejecting a correct result;
P(Ac) = the probability of accepting a correct result
=1 - P(Rg)s

Type 1 Error =

Type 2 Error =

Type 3 Error =

Type 4 Error =

n = the number

the program alternate produces an incorrect result,
but the acceptance test labels the result as correct;

the final alternate produces correct results, but
the acceptance test erroneously determines that
the results are incorrect;

the recovery p.ogram cannot successfully recover
the input state of the previous alternate in prepa-
ration for executing another alternate or could
not successfully invoke the next alternate;

the last alternate produces fncorrect results and
the acceptance test judges that the results are
incorrect;

of alternates; and

R = the relfability.

The results of

Scott's recovery block reliability model will be

compared to those that would be obtained in the software reliability model

. o o e - & B A



I T U e FRTL PR RPN

4-71

that has been proposed. Tne block diagram for the recovery block that is
described by Scott would ook 1ike:

1 [Alternate 1 | 0
N Accentance U
p —w= — | Alternate 2 @ | = Test — g
l-,’- { Alternate n ] g

Rollback -

Figure 16. Basic Recovery Rlock

For n = 1, the feedback loop would be deleted, giving a block diagram of

0
IIV Primary Acceptance u
p ———e Alternate | o Test I |
f (61) (G2) 5
T T

Figure 17. Special Case Recovery Block with Only One Alternate

with an overall transfer function of R = G x G2. This spectal case with
n=11{s computed with Scott's recovery block reliability model as

R=1-(Type 1 Error + Type 2 Error + Type 3 Error +
Type 4 Error],

with Type 1 Error = P(I1)P(A1);
Type 2 Errar = P(C1)P(Rc)s
Type 3 Error = 0; and
Type 4 Error = P(11)P(Ry).

By substitution,

G162 = 1 - [P(I7)P(A7) + P(C1)P(Rc) + P(I1)P(Ry)].

R N AR TR e S N e M

o O

e O T T N Wi Y (o T P e S e N T
N NS Rt T R TR AR S P

P

LY
L

2>

LT XAAL S Y

XX

PR A ARAUTWEE 4 A AP 4 7,

AR RERERRRY BN Y, LFRARRS LI . A SN E X, AT

e . A b



4-72
By furth.r substitution,

GiGp = 1 ~ i[1 - P(C1)I[1 ~ P(Ry)I = P(C1I[1-P(AC)] +
[1 - P(C1)IP(R}):.

Multiplying out the factors gives

G167 = 1= 11+ P(Cy)P(R;) = P(Cy) - P(R
- P(C1)P(Ac) + P(R;) ~ P(CyIP(R

!
?
.

) + P(Cy)
)i,

This can be reduced to

6162 = 1 - [1 - P(C1)P(Ag)] = P(C1)P(Ac).
This is as expected, with G} = P(Cy) and Gz = P(Ac).

For n = 2,
G162 =1 - [Type 1 Error + Type 2 Error +
1 - G1G2H Type 3 Error + Type 4 Error].

By substitution,

G162

2 =1 - [{P(1)P(Ar) + [P(I7)P(AD) = 0] x
1 - G1GzH

[ PLCRIPUI2) ¢ (p(cy)P(Re) +
P(17)
P(I1)P(R7)1} + {P(C1)P(RgIP(CRIP(C2) «x
[P(Re) + PUILIP(R) ) +
P(Cy)
{P(C1IP(RCIP(IR) + P(I1)P(RI)P(IR)} ¢+
[P(I1)P(R)P(CRIP(I2)[P(R]) ¢+
P(C1)P(Re) 111.
P(I1)

[EELALLS RIS

!

RO LS |

| Sl s ol g oy &t

EX)

R AR

Y P S

-« =3 M

R



4-73

Multiplying out the factors and cancelling alike numerator and denominator
terms gives

G182 =1 - [P(I1)P(Rp) + P(AF)P(CRIP(12)P(CY)P(R) +
1 - GyGad P(AT)P(CRIP(I2)P(I1)P(Ry) +
P(C1)P(RCIP(CRIP(C2IP(Re) +
P(RC)P(CRIP(C2)P(11)P(R]) +
PIC1)P(RCIP(IR) + P(11)P(R;)P(IR) +
P(IDP(RIP(CRIP(I2)P(R]) +
P(R{)P{CRIP(I2)P(C:)P(RC)].

By substitution,

6162 =1 - {[1-P(C)I2 - PRI +
1 - GjGoH [1 - P(R7)IP(CRI[1 - P(C2)IP(C]) x

(1 - P(A¢)] +.[1 - P(R7)IP(CR) x

(1 - P(C2)I[1 - P(C1)IP(Ry) +

P(C{1 - P(AC)IP(CRIP(C2)[1 = P(Ac)] +
[1 - P(Ac)IP(CR)P(C2)[1 - P(C3)IP(R]) +
P(C)[1 - P(AC)I[1 - P(CR)] +

(1 - P(CYIP(RL)[L -~ P(CR)] +

[1 - P(C)IP(RPIP(CRI[1 - P(C2)IP(R]) +
P(RIIP(CRI[1 - P(C2)IP(Cy)[1 - P(Ac)I}.

With the factors multiplied out,

6167 = 1 - [1+P(C;)P(R7) - P(Cy) - P(R1) + P(C1IP(CR) -
1 - GjGoH P(C1)P(C2)P(CR) = P(C1)P(CRIP(RL) +

P(C1)P(C2)P(CRIP(Ry) =~ P(AC)P(C1)P(CR) +
P(AC)P(C1)P(C2)P(CR) + P(AG)P(C1)P(CRIP(RT) -
P(Ac)P(C1)P(C2)P(CR)P(R]) + P(CRIP(R]) -
P(C1)P(CRIF(RL) = P(C2)P(CRIP(RL) +
P(C1)P(C2)F(CR)P(R]) - P(CRIP(R)P(R]) +
P(C1)P(CRIP(RL)P(Rr) + P(C2)P(CR)P(R1)P(RT) -
P(C1)P(C2)P(CRIP(RL)IP(R) + P{C1)P(Ca)P(CR) -

Al

» %
[’-f -x

/i

LA
<

5

'i" I.'.‘.
(R e

N

[
Jﬁ‘lyl‘.' L

P S
=Y

v

X
“.

AR5 A WSS

'f.;I'I VAP adh IS

¢
b L%

"~re
| %

a'a"a ai

NI b SO, T S -
LY PN

‘\ sy

BRI Al Y
AR AR, :



By cancellation,

662

1 - G)GoH

Rearranging gives

6162

1 - G1GH

For n = 3,

6162

1 - G1GH

By substitution,

6162

1 - GjGpH

4-74

P(AC)P(CLIP(C2)P(CR) - P(AC)P(CIP(C2)P(CR) +
P(AC)P(Ac)P(Cl)P(Cz)P(CR) + P(Cz)P(CR)P(R;) -
P(C1)P(C2)P(CRIP(R1) - P(ACIP(C2)P(CRIP(R;) +
P(AC)P(C1IP(C2)P(CRIP(R;) + P(C1) - P(C1)P(CR) -
P(AC)P(CI) + P(Ac)P(Cy)P(CR) + P(Ry) -
P(CRIP(R) = P(C1IP(R;) + P(Cy1)P(CRIP(R]) +
P(CR)P(R7)P(R]) - P(C2)P(CRIP(RI)IP(R;) -
P(C1IP(CRIP(RT)P(R) +
P(C1)P(C2)P(CRIP(RI)P(R;) + P(Cy)P(CRIP(R]) -
P(Ac)P(C1)P(CRIP(R:) = P(C1)P(C2)P(CRIP(R:) +
P(AC)P(C1IP(C2)P(CRIP(R])].

= 1. [1-P(Ac)P(C1)P(C2)P(CR) +
P(Ac)P(Ac)P(C1)P(C2)P(CR) -
P(AC)P(C2)P(CRIP(RT) - P(ACIP(Cy) +
P(AC)P(C)P(C2)P(CRIP(R])].

= P(Ac)[P(Cy)P(C2IP(CR) = P(AgIP(Cy)P(C2)P(CR) +
P(C2)P(CRIP(Ry) + P(C]) -
P(C1)P(C2)P(CRIP(R])].

=1 - [Type 1 Error + Type 2 Error ¢
Type 3 Error + Type 4 Error].

=1 - [{P(11)P(A]) ¢
P(AT)P(CRIP(I2)[P(C1)P(Rc) + P(I1)P(Ry)] +
P(ATIP(CRIP(12)IP(C1)P(Rc) + P(11)P(R])] x

................................

wassdNT [Pl

(P Ve r RAA N A, ST )

B A PryeYIPPS



4-75

[ PERIPUS) qrp(ca)p(re) + PUIIP(RY)T) +
P(I2)
{P(C1)P(C2)P(CRIP(RCIP(RCIP(CRIP(C]) x
[P(Re) + _PUI2)IP(RI) 3 + P(Ca)P(CRIP(I]) x
P(C2)
P(RC)P(RIIP(CRIP(C3)[P(Re) + P(I2)P(RI) 7} +
P(C2)
{P(C1)P(Rc)IP(IR) + P(I1)P(RI)F(IR) +
(P(C1IP(Re)IP(IR) + P(I1)P(R7)P(IR)] x
P(CRI[P(C2)P(Re) + P(I3)P(R)]} +
{IP(I1)P(RT)P(CRIP(I2)[P(Ry) + P(C1)P(Rc) 7«
P(I1)
P(CRIP(13)[P(R) + P(C2)P(Rc) 31,
P(12)

(o o w_w

P2

Y KPP

=

By multiplying out the terms (and arranging the coefficients in alphabetical and
numerical order),

6162 = 1 - [P(A[)P(I]) + P(A7)P(C1)P(CRIP(I2)P(Re) +
1 - G1G2H P(AD)P(CR)P(I1)P(I2)P(R]) +
[P(A1)P(C1)P(CRIP(CRIP(I3)P(Re) +
P(AT)P(CRIP(CRIP(I1)P(I3)P(RT)] x
[P(C2)P(Rc) + P(I2)P(R1)] +
P(C1)P(C2)P(C3)P(CRIP(CRIP(RC)P(RCIP(Re) +
P(C1)P(C3)P(CR)P(CRIP(I2)P(Rc)P(RCIP(R]) +
P(C2)P(C3)P(CRIP(CRIP(11)P(RcIP(Re)IP(R]) +
P(C3)P(CRIP(CRIP(11)P(12)P(RCIP(RT)P(R]) +
P(C1)P(IR)P(Re) + P(I1)P(IR)P(Ry) +
P(C1)P(L2)P(CRIP(IRIP(RcIP(RC) +
P(C1)P(CRIP(I3)P(IR)P(RC)P(R]) +
P(C2)P(CRIP(11)P(IRIP(RC)P(R]) +
P(CRIP(11)P(13)P(IR)P(RI)P(R]) +
[P(CRIP(CRIP(I1)P(12)P(I3)P(R])P(R]) +
P(C1)P(CRIP(CRIP(I2)P(I3)P(Rc)P(RE)] x
[P(Ry) + P(C2IP(Rc) 73.
P(12)

a®a e u" "l PWATF IIP ALL | g R P IR g



EEILVEL I Jhae

Absesady bty

ALLALAY. s apadl

s
‘...“J, :

- w m wo.A

4-76

By substitution [to eliminate the P(A7) and P(Ij) terms],

U882 e |Deeen0n - pRDT ¢
1 - G)G2H [1 - P(Rp)IP(C1)P(CRIILL - P(C2)I[1 - P(AC)] +

{1 - P(RDIP(CRI(1 - P(C)IL1 = P(C2)IP(Ry) +
{L1 - P(R)I[P(CYIP(CRIP(CRITL - P(C3)I[1 - P(AC)] +

[1 = P(Rp)IP(CRIP(CRILL - P(C1)I[1 - P(C3)IP(R)} x

{P(C2)[1 - P(Ac)] + [1 - P(C2)IP(R])} +
P(C1)P(C2)P(C3)P(CRIP(CRI[L - P(Ac)I[1 - P(Ag)I[1 - P(AC)] +
P(C1)P(C3IP(CRIP(CRI[L - P(C2)]T1 - P(Ac)IL1 - P(A¢)IP(R:) +
P(C2)P(C3)P(CRIP(CRILL - P(C1)I[1 - P(AC)ILL - P(AC)] x
P(Ry) + P(C3)P(CRIP(CRI[L - P(C1IIL1 - P(C2)I[1 - P(Ac)] x
P(RI)P(R7) + P(C1)[1 - P(CRII[L - P(Ag)] + [1 - P(C1)] x
(1 - P(CR)IP(Ry) + P(C1)P(C2)P(CRI[L - P(CR)I[1 - P(Ag)] x
[1 - P(AC)] + P(C)P(CRI[L - P(C3)I[1 - P(CR)ICL = P(AC)] x
P(R7) + P(C2)P(CRI[1 = P(C1)I[1 - P(CRII[1 ~ P(Ag)] x
P(R;) + P(CR)[1 - P(C1)I[1 - P(C3)I[1 - P(CR)IP(R]) «x
P(Rr) + P(CR)P(CR)[1 - P(C1)I[1 - P(C2)I[1 - P(C3)] x
P(RI)P(R7) + P(C1)P(CRIP(CRI[1 = P(C2)I[1 - P(C3)] x
[1 - P(AC)IP(R;) x {P(Ry) + _P(C2)[1 -_P(Ac)l}]

[1 - P(C2)]

Multiplying the terms out gives:

6162 = 1- [1-P(C1) - P(R]) + P(C1)P(R[} + P(C1)P(CR) -

1 - G16oH P(C1)P(C2)P(CR) - P(Ac)P(C1)P(CR) + P(Ag)P(C1)P(C2)P(CR) -
P(C1)P(CRIP(R]) + P(C1)P(C2)P(CRIP(Ry) + P(Ac)P(C1)P(CR)P(R]) -
P(AC)P(C1)P(C2)P(CRIP(R) + P(CRIP(RT) = P(C1)P(CRIP(R}) -
P(C2)P(CRIP(Ry) + P(C1)P(C2)P(CR)IP(R]) -

P(CRIP(R1)P(Ry) + P(C1)P(CRIP(RT)P(RL) + P(C2)P(CRIP(R)IP(R]) -
P(C1)P(C2)P(CRIP(RT)P(Ry) + P(C1)P(C2)P(CR)P(CR) -
P(C1)P(C2)P(C3)P(CRIP(CR) - P(AcIP(C1)P(C2)P(CR)IP(CR) +
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) = P(C1IP(C2)IP(CRIP(CRIP(R])
P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) + P(AC)P(C1)P(C2)P(CRIP(CR)P(Ry) -

| R

e m R ASreX S LSS AN WEFELLRSE BAMAYRYY



4-77

P(AC)P(C1)P(C2)P(C3)P(CRIP(CRIP(RT) + P(C2)P(CRIP(CRIP(R]) -
P(C1)P(C2)P(CRIP(CRIP(R7) = P(C2)P(Ca)P(CRIP(CRIP(R]) +
P(Cy1)P(C2)P(C3)P(CRIP(CRIP(R:) = P(C2)P(CRIP(CRIP(RIIP(R;) +
P(C1)P(C2)P(CRIP(CRIP(R;)P(Ry) + P(C2)P(C3)P(CRIP(CRIP(RI)IP(R]) -
P(C1)P(C2)P(C3)P(CRIP(CRIP(RT)P(RL) = P(Ac)P(Cy)P(C2)P(CR)P(CR) +
P(AC)P(C1)P(C2)P(C3)P(CRIP(CR) + P(AC)P(AC)P(C1)P(C2)P(CR)P(CR) -
P(AC)P(AC)P(C1IP(C2)P(C2)P(CRIP(CR) +
P(Ac)P(C1)P(C2)P(CRIP(CRIP(R;) -
P(AC)P(Cy)P(C2)P(C3)P(CRIP(CRIP(R]) -
P(Ac)P(A)P(C1IP(C2IP{CRIP(CRIP(R]) +
P(Ac)P(Ac)P(Cy)P(C2)P(C3)P(CRIP(CRIP(R]) -
P(Ac)P(C2)P(CRIP(CRIP(R]) +

P(AC)P(C1)P(C2)P(CRIP(CRIP(R;) +

P(Ac)P(C2)P(C3)P(CRIP(CRIP(R]) -
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) +
P(Ac)P(C2)P(CRIP(CRIP(RI)P(R]) =
P(Ac)P(C1)P(C2)P(CRIP(CRIP(RT)P(R]) -
P(Ac)P(C2)P(C3)P(CRIP(CRIP(RI)P(R]) +
P(ACIP(C1IP(C2)P(C3)P(CRIP(CRIP(RIIP(R]) +

P(C1)P(CRIP(CRIP(Ry) = P(C1)P(C3)P(CRIP(CRIP(R]) -
P(Ac)P(C1)P(CRIP(CRIP(RT) + P(Ac)P(C1)P(C3)P(CRIP(CR)IP(R]) -
P(C1)P(CRIP(CRIP(RT)P(Ry) + P(C1)P(C3)P(CRIP(CRIP(RL)IP(R]) +
P(ACIP(C1)P(CRIP(CRIP(R])P(R]) -
P(Ac)P(C1)P(C3)P(CRIP(CRIP(R)P(Ry) +

P(CRIP(CRIP(RIIP(Ry) - P(Cy)P(CRIP(CRIP(RE)P(R]) -
P(C3)P(CRIP(CRIP(RT)P(Ry) + P(C1)P(C3)P(CRIP(CRIP(RE)P(R]) -
P(CRIP(CRIP(RIIP(R1)P(R]) +

P(C1)P(CRIP(CRIP(RTIP(RT)P(R]) + P(C3)P(CR)P(CR)P(R1)P(RI)P(RI) -
P(CLIP(C3)P(CRIP(CRIP(RT)P(R)P(R]) - P(C1)P(C2)P(CRIP(CRIP(R]) +
P(C1)P(C2)P(C3)P(CRIP(CRIP(Ry) + P(Ac)P(C1)P(C2)P(CRIP(CRIP(R]) -
P(AC)P(C)P(C2)P(C3)P(CRIP(CRIP(RY) +
P(C1)P(C2)P(CRIP(CRIP(P1)P(R]) -
P(C1)P(C2)P(C3)P(CRIP(CR)P(RT)P(R]) -
P(Ac)P(C1)P(C2)P(CRIP(CRIP(RIIP(RE) +
P(Ac)P(Cy1)P(C2)P(C3)P(CR)IP(CRIP(R])IP(R]) -
P(C2)P(CRIP(CRIP(RT)P(R1) + P(Cy)P(C2)P(CRIP(CRIP(RL)IP(R]) +




. .‘f:";'J RITALEIIR 32 EE N [ AT ST

A

Y -, ST - [ e
AL CAARDA AL, LA

e
<

N - “,.‘ AR A N _
e e N Aare e a Y gl e Y S

ks

4-78

P(C2)P(C3)P(CR)IP(CRIP(Ry)P(R]) -
P(Cy)P(C2)P(C3)P(CRIP(CRIP(R;)P(R]) +
P(C2)P(CRIP(CRIP(RT)P(R)P(R]) -
P(C1)P(C2)P(CR)P(CRIP(RTIP(RI)P(R]) -
P(C2)P(C3)P(CRIP(CRIP(RT)P(RT)P(RT) +
P(C1)P(C2)P(C3)P(CRIP(CRIP(R)P(R)P(R]) +
P(C1)P(C2)P(C3)P(CR)P(CR) -
P(ACIP{C1IP(C2)F(C3)P(CRIP(CR) -
P(Ac)P(C1)P(Ca)P{C3)P(CRIP(CR) -
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) +
P(Ac)P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) +
P(Ac)P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) +
P(Ac)P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) -
P(Ac)P(Ac)P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) +
P(C1)P(C3)P(CRIP(CRIP(RT) - P(ACIP(C1)P(C3)P(CRIP(CRIP(R]) -
P(ACIP(C1)P(C3)P(CRIP(CRIP(RT) +
P(Ac)P(Ac)P(C1)P(C3)P(CRIP(CRIP(RE) ~
P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) +
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) +
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) -
P(AC)P(ACIP(C1)P(C2)P(C3)P(CRIP(CRIP(RL) +
P(C2)P(C3)P(CRIP(CRIP(R]) = P(Ac)P(C2)P(C3)P(CRIP(CR)IP(R]) -
P(Ac)P(C2)P(C3)P(CRIP(CRIP(R]) +
P(Ac)P(Ac)P(C2)P(C3)P(CRIP(CRIP(RT) -
P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) +
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CIP(RD) +
P(Ac)P{C1)P(C2)P(C3)P(CRIP(CRIP(RE) ~
P(AC)P(AC)P(C1)P(Cz)P(Cg)P(CR)P(CR)P(RI) +
P(C3)P(CR)P(CR)P(R)P(R]) -
P(Ac)P(C3)P(CRIP(CRIP(R)P(Ry) - P(C2)P(C3)P(CRIP(CR)P(R])IP(R]) ¢
P(Ac)P(C2)P(C3)P(CRIP(CRIP(RIIP(R]) -
P(C1)P(C3)P(CRIP(CRIP(RI)P(R]) +
P(Ac)P(C1)P(C3)P(CRIP(CRIP(RT)P(R]) +
P(C1)P(C2)P(C3)P(CR)P(CRIP(RT)P(R]) -



i 0 + o i i< 2

————— v o s . e et

-

4-79

P(Ac)P(C1)P(C2)P(C3)P(CRIP(CRIP(RI)P(Ry) + P(Cy) -
P(Ac)P(Cy) = P(C1)P(CR) + P(AC)P(Cy)P(CR) + P(Ry) =
P(CRIP(R1) = P(Cy1)P(R1) + P(C1)P({CRIP(R]) + P(C1)P(C2)P(CR) =
P(C1)P(C2)P(CRIP(CR) = P(Ag)P(C1)P(C2)P(CR) =
P(Ac)P(C1IP(CoIP(CR) + P(AC)P(C1)P(CIP(CRIP(CR) +
P(AC)P(C1)P(C2)P(CR)P(CR) - P(Ac)P(Ac)P(C1)P(C2)P(CRIP(CR) +
P(C1)P(CRIP(R1) - P(C1)P(C3)P(CRIP(R]) - P(AC)P(C1)P(CRIP(R]) +
P(Ac)P(C1)P(C3)P(CRIP(R;) - P(C1)P(CR)P(CRIP(R]) +
P(C1)P(C3)P(CRIP(CRIP(R]) + P(AC)P(C1)P(CRIP(CR)P(R:) -
P(Ac)P(C1)P(C3)P(CRIP(CRIP(Ry) +

P(C2)P(CRIP(Ry) = P(Cy)P(C2)P(CRIP(R]) -
P(AC)P(C2)P(CRIP(Ry) + P(AC)P(C1)P(C2)P(CRIP(R]) -
P(C2)P(CRIP(CRIP(R) + P(C1)P(C2)P(CR)IP(CRIP(R]) +
P(Ac)P(C2)P(CRIP(CRIP(RT) = P(Ag)P(C1)P(C2)P(CRIP(CRIP(R]) +
P(CRIP(RI)P(Ry) = P(C1)P(CRIP(RIIP(R]) -
P(C3)P(CRIP(RT)P(Ry) + P(C1)P(C3)P(CRIP(R)P(R]) -
P(CRIP(CRIP(RI)P(Ry) + P(Cy)P(CRIP(CR)P(RI)P(RE) +
P{C3)P(CRIP(CRIP(RIIP(R1) = P(C1)P(C3)P(CRIP(CRIP(RLIP(R]) +
P(CRIP(CRIP(RI)P(RI)P(R) - P(C1)P(CRIP(CRIP(RIP(R])P(R]) -
P(C2)P(CRIP(CRIP(R;IP(RI)P(R]) +
P(C1)P(C2)P(CRIP(CRIP(RLIP(RIIP(R]) -
P(C3)P(CRIP(CRIP(RIIP(RIP(RT) +
P(C1)P(C3)P(CRIP(CRIP(RI)P(RT)P(R]) +
P(C2)P(C3)P(CR)P(CRIP(RT)P(RT)P(R) -
P(C1)P(C2)P(C3)P(CRIP(CRIP(RT)P(RT)P(R]) +
P(C1)P(CRIP(CRIP(R1)P(R]) = P(C1)P(C2)P(CRIP(CRIP(RT)P(R]) -
P(AC)P(C1)P(CRIP(CRIP(RI)P(R]) +
P(AC)P(C1)P(C2)P(CRIP(CRIP(RIIP(R]) -
P(C1)P(C3)P(CRIP(CRIP(RL)P(R]) +
P(C1)P(C2)P(C3)P(CRIP(CRIP(RI)P(Ry) +
P(Ac)P(C1)P(C3)P(CRIP(CRIP(RT)P(R]) -
P(Ac)P(C1)P(C2)P(C3)IP(CRIP(CRIP(RT)P(R]) +
P(C2)P(CRIP(CRIP(RI)P(R]) = P(A¢)P(C2)P(CRIP(CR)P(R])P(Ry)
P(C1)P(C2)P(CRIP(CRIP(R]IP(R]) +

TR L AR TRE R JCRARRRNN LS Y, AICVETC LV e Adsl | XN LA AN B

a7 WO

RN B P YAAnsl NN



SARNLE P USSR PIAALISA SIS

. 4

RRTS T ITT LISHITIAE  WINTREYY "URYILRYY NNRRSSN RV}

|
- -

v,

By cancellation,

G162

S [ .

1 - GjGoH

4-80

P(Ac)P(C1)P(C2)P(CR)P(CRIP(RT)P(R]) -
P(Cz)P(C3)P(CR)P(CR)P(RI)P(RI) +
P(Ac)P(C2)P(C3)P(CRIP(CRIP(RIIP(R]) +
P(C1IP(C2)P(C3)P(CRIP(CRIP(RI)P(R]) -
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CRIP(RIIP(R]) +
P(C1)P(C2)P(CRIP(CRIP(Ry) = P(AC)P(C1)P(C2)P(CRIP(CRIP(R]) -
P(Ac)P(C31)P(C2)P(CRIP(CRIP(Ry) +
P(AC)P(Ac)P(Cy)P(C2)P(CRIP(CRIP(R]) -
P(C1)P(C2)P(C2)P(CRIP(CRIP(R]) +
P(Ac)P(C1)P(C2)P(C3)P(CRIP(CRIP(R) +
P(AC)P(C1)P(C2)P(C3)P(CRIP(CRIP(R]) -
P(Ac)P(Ag)P(Cy)P(C2)P(C3)P(CRIP(CRIP(R])].

=1« [1+P(C1)P(C2IP(CRIP(Ry) + P(C2)P(CRIP(R])IP(R]) =

P(C1)P(C2)P(CRIP(RIIP(Ry) = P(C1)P(C2)P(CRIP(CRIP(R]) +
P(AC)P(C1)P(C2)P(CRIP(CRIP(R]) + P(C1)P(C2)P(CRIP(CRIP(R]IP(R]) -
P(C2)P(CRIP(CRIP(RIIP(R]) = P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR) +

2 x P(Ac)P(Ac)P(Cy)P(Co)P(C3)P(CRIP(CR) -
P(Ac)P(AcIP(Ac)P(C1)P(C2)P(C3)P(CR)P(CR) +
P(C1)P(C3)P(CRIP(CRIP(Ry) ~ 2 x P(Ac)P(C1)P(C3)P(CRIP(CR)P(R]) +
P(Ac)P(Ac)P(C1)P(C3)P(CRIF(CRIP(R]) +

2 x P(Ac)P(Cy)P(C2)P(C3)P(CRIP(CRIP(R]) -

2 x P(Ac)P(Ac)P(C1)P(C2)P(C3)P(CRIP(CR)P(R]) -
P(Ac)P(C2)P(C3)P(CRIP(CRIP(R]) +
P(AC)P(Ac)P(C2)P(C3)P(CRIP(CRIP(R]) =
P(Ac)P(C3)P(CRIP(CRIP(RL)P(Ry) - P(Ag)P(Cy) -
P(C1IP(C3)P(CRIP(RT) + P(Ac)P(C1)P(C3)P(CRIP(R]) -
P(Ac)P(C2)P(CRIP(RE) - P(C3)P(CRIP(RTIP(R]) +
P(C1)P(C3)P(CRIP(RI)P(RT) + P(C3)P(CRIP(CRIP(RI)P(R]) -
P(Cl)P(Cg)P(CR)P(CR)P(RI)P(RI) +
P(Ac)P(C1)P(C3)P(CRIP(CRIP(R)P(R]) +
P(Ac)P(C2)P(C3)P(CRIP(CRIP(R])IP(R]) -
P(AC)P(C1)P(C2)P(C3)P(CRIP(CRIP(RL)P(R])].




ka'cv’
~N

e
A t
R

A

- s e e

(s

B

N RN
' o ¢
FIL s

‘“,j__,.,.
T LY

4 -
‘."‘.(

v w ot 4

v

R R PORR X gy T4 .

4-81

By combining similar ternms,

G162

1 - G1G2H

= P(AC)P(Cy) + [-P(C1)P(C2) + P(C1)P(C3) + P(Ac)P(C2) -

P(Ac)P(C1)P(C3)IP(CRIP(R]) +

[-P(C2} + P(C3)I[1 - P(C1)IP(CRIP(RIIP(R;) +

(1 - P(Ac)I[1 = P(AC)IP(AC)P(Cy)P(C2)P(C3)P(CRIP(CR) *

[1 - P(Ag)] x {P(C1)[P(C2) - P(C3)] +

P(Ac)P(C3)IP(Cy) + P(Cp) - 2P(Cy)P(C2)1IP(CRIP(CRIP(R]) +
[1 - P(C1)] x {P(C2) - P(C3) + P(Ac)P(C3)[1 = P(C2)]} x
P(CRIP(CR)P(RL)IP(Ry).

By Scott's definitions of the variables, it would be expected that:

The recovery block, G}, with its n alternates be a function
of P(Cy);

The acceptance test, G2, be a function of P(Ac) and/or
P(R1); and

The rollback, H, be a2 function of P(CR).

Although this was true for the special case with n = 1, the cases with n = 2

and n = 3 show that the two models are too distinct in their methods to be
compared.



|
Ty
=Tat

R
ik

PaAs EESESNEN SNESunaL S

PRy {t

‘;élf

3

i

Ti
-

Fy

bt
s
e

i
o
.I

LS

PO
ot .\.‘._Lx' l\-‘i‘

PP

~l’

e
A A g S W W

- o agalt
RIS P Eaa P eI N I N

4-82

APPENDIX VI
ANALYSIS OF SCOTT'S N-VERSION PROGRAMMING RELIABILITY MODEL

In Scott's N-version programming reliability model, the variables
are defined as:

P(Ci) = the probability of version i executing correctly;

P(I4) = the probability of version i executing incorrectly,
1 - P(Ci)s

Type 1 Error = all outputs disagree;

Type 2 Error = an incorrect output occurs more than once;

Type 3 Error = there is an error in the voting (decision algorithm)
procedure;

n = the number of versions; and
R = the reliability.

The results of Scott's N-version programming reliability model
will be compared to those that would be obtained in the software reliability
model that has been proposed. The block diagram for the N-version software
that is described by Scott would look 1ike:

LVersion 1 |
[Version 2] Decision
. Algorithm

[Version 3] (Voter)

| Version n |

~NC o=

—“~co—-CO

Figure 18. Basic N-Version Software

For the proposed software reliability model, it is desired that
the individual reliability values for the n versions be combined to form

one reliability value (or transfer function) for the group. The block diagram
for this might be

[ S

e e ERemssrsegsos TXEEWRT SRS



- o — -

R i, e

G o e e —— Pt o — Lt

BT e et w ™ et e m

.

4-83
0
; Decision g
— N Versions Algorithm
P (G1) = (Voter) . 5
T (62) T

Figure 19. Basic N-Yersion Software Equivalent

with an overall transfer function of R = G x Gp.

A simple case to examine is the N-version software composed of
three independent versions. The probability of a system error in this 3-version
sofiware system becomes the probability of at least two versions executing

incorrectly. This simple case is computed with Scott's N-version programming
reliability model as

R=1- [Type 1 Error + Type 2 Error + Type 3 Error].

In Scott's analysis, he assumes that the probability of a Type 3 Error is
2ero. Therefore, with Scott's model, :

R=1-{[P(I1)P(I2)P(13)] + [P(C1)P(I2)P(13) +
P(I1)P(C2)P(I3) + P(I3)P(I12)P(C3)] + O}.

By substitution,

6162 = 1 - {[1 - P(C})I[1 - P(C2)I[1 - P(C3)] +
P(C1)(1 - P(C2)I[1 - P(C3)] +
(1 - P(C1IP(C2)[1 - P(C3)] +
[1 - P(Cy)IL2 - P(C2)IP(C3)}.

Multiplying out the factors gives

GiG2 = 1 - In

P(Cy) - P(Cp) + P(C1)P(C2)I[1 - P(C3)] +

P(Cl)[l - P(Cz) - P(C3) + P(Cg)P(C3)] +
P(C2)[1 -~ P(Cy) - P(C3) + P(C1)P(C3)] +
P(C3)[1 ~ P(C1) -~ P(C) + P(C1)P(C2)]}.

<

PORYE S o BN SYRE L PP FENEFYES e AN

> D B R S S w memms e o w B O S N _ @8 LY _",."a

- L L oL o o o o o e o e e e o 2 e &



RETIY ISP ARRSLANT RAS

‘.
»%2

o DA, Kyan kb LAALLL R

A ARRS

ek
KN

4-84
With further multiplication,

GGy = 1 - [1 ~ P(Cy) - P(Ca) + P(C1)P(Cp) ~ P(Ca) +
P(C1)P(C3) + P(C2)P(C3) ~ P(C1IP(C2)P(C3) +
P(C1) = P(CyIP(€2) - P(Cy)P(C3) +
P(C1)P(C)P(C3) + P(C2) ~ P(C1)P(CZ) -
P(C2)P(C3) + P(C1)P(C2)P(C3) + P(Ca) -
P(C1)P(C3) - P(C2)P(C3) + P(C1)P(C2)P(C3)].

Cancelling alike terms gives

GiGp = 1 - [1 - P(C1)P(Ca) - P(C1)P(C3) = P(Ca)P(C3) +
2P(C1)P(C2)P(C3)].

This can be reduced tc
G162 = P(C1)P(C2) + P(C1)P(C3) + P(C2)P(C3) - 2P(Cy)P(C2)P(C3).

With Scott's assumption that the probability of a Type 3 Error is zero, the

equivalent assumption in the software reliability model would be that
G2 = 1. Therefore,

Gy = P(C))P(Ca) + P(Cy)P(C3) + P(C2)P(C3) - 2P(Cy)P(C2)P(C3).

2w oW -



5-1
TECHNICAL REPORT
on .

SOFTWARE RELIABILITY DATA AND DATABASE

1.0 INTRODUCTION

The software reliability data required by the software reliability
model was described in the previous section. This section describes the
data to be collected by avionics systems developers prior to starting develop-

ment of the software packages, during the development of the software packages,

and during the operational 1ife of the software. In addition, attributes
of the data base program are desc¢ribed.

2.0 BACKGROUND

As noted in the previous section of this report, the software reli-
ability model's primary inputs are probabilities. While this is an excellent
form for the model, it is not the normal type of data collected by avionics
systems developers. The data collected by developers of avioncs systems
tends to be deterministic as opposed to statistical. The statistical and
probabilistic values are derived from the determinstic data as discussed
in earlier sections of this report. The method used by Battelle to derive
these data ties in closely with the database program.

Although any database manager can store and retrieve information,
spreadsheet programs provide more capability than a simplé file manager.

The spreadsheet programs with their built-in functions provide the capability
to analyze the data instead of simply storing and retrieving data. There

are a large number of spreadsheet programs to choose from and the selection
of a specific program is not within the scope of this work. This section
does discuss factors which should be considered in the selection of a spread-
sheet program.

n,:.

a.e.8

Ay

Drsi B

".‘.

X
O

vy ®_ 9
e’

Loag T XX

-

. .
-

A
N

A R

Fad -3 =)

] %" T
4 pes .,.,A

»

r s

LRy

4
5

:.;'J'.)..)? g

i

m“."l’f’f 4 ‘.'.‘l.’d’.‘" -"I P IP ‘..;-

"a

[ A

202 d Al



EOTVY S N R U P S NG WS S S

Tt a AP AT e

e

e AN

. s PRI RS S R A P oV S g
TR Y Y b e e N Ly g a L e

e
kT A,

NaaTa

5-2
3.0 DATABASE PROGRAM AND SOFTWARE RELIABRILITY DATA

The data to be collected by the avionics system developer is collected
at different times during the software 1ife cycle. It is likely to be organized
in any database program as an assortment of different files. In order to
manipulate these data contained in different files into the form reauired
by the software reliability model, a relational database manager which can
1ink segarate data files to create a cdatabase containing information selected
from tne different files is recommended.

Principles of data design should be applied when developing the
database. Data design is a set of principles and analytic tools that brings
to the design of data the same kind of organization that structured programs
brings to programs. To avoid dangerous file designs, a clear understanding
of the dependencies in the files is necessary. Transitive dependencies are
a frequent cause of structural problems in the design of files.

Once the database is created, use of a spreadsheet with its built-in
arithmetic and statistical functions will provide the capability to analyze
deterministic data such as lines of source code, memory usage, errors detected,
errors corrected, and linkages and assemble these data into the statistical
form required for determining the probabilistic inputs required by the software
reliability model.

The inputs required for the database program will depend upon the
software reliability model (reference Section 2, "Technical Report on Review
of Previous Studies of Software Reliability Models" for some examples) used
to obtain the probabilistic reliability value that is required in the software
reliability model descrihed in Section 4, "Technical Report on Formulation
of the Software Reliability Modei". Table 1 1ists some of the software reliability
models and their required inputs. The built-in arithmetic and statistical
functions will manipulate this input data to obtain the probabilistic reli-
ability values. An example of what the input and output for the database
program might look like is given in Tables 2 and 3.




Table 1. Input Data Used by Various Software Reliabilfty Models

Software
Reliability Model

Input Data

Generalized Imperfect
Debugging Model

N =
p =

the total number of errors;
the probability of perfect
programmer debugging behavior

Bug-Proportional Model

ep(=

J = the number of remaining
bugs

Geometric Poisson Model

>
L]

ty =

the average number of faults
occurring in the first
interval;

the i-th debugging interval

Schneidewind Non-Homogeneous
Poisson Model

my =

the estimated number of
errors in interval {

Jelinski-Moranda
De-Eutrophication Model

Xy =

the number of initial errors
in the program;

the length of the i-th
debugging interval;

the number of e¢+=rors found
to date

Extended Jelinski-Moranda
Model

ti =

the total number of initial
errors; .

the cumulative number of
errors found through the
i-th interval;

the i-th debugging interval

Geometric De-Eutrophication
Model

the initial error detection
rate;

the total number of errors
discovered;

the {-th debugging interval

Lines of Source Code Model

nes=

the total number of lines of
source code; the programming
language (1.e., FORTRAN,
Cobol, Ada, etc.)

R T A A TR R e SRR L R T R AT R e e T R S T A R TR N e S A A N A e T T T e e U e T e e

“a YW -l
e =

AL

“p "9 ¥

2o Y XA

L=l I ERAAN

v
©

>

K X

£ 4
.l
a'n

XX,

VL XX PP Al Y

o~

4 ‘_"p L

-y e v
LA IR A

" -
ﬂ..*.)'v)'i‘,

Al

A

w

s il AL AL g

X

% /Y2 NN

- »_ B
Pl

4
Ly

LG v

- e



5.4

IgeY RESRSOERD WY E R I SIt4388F 13134800 Y i3YNNEL4iE

PAOL L U NS B XA LAAA BRI Y Y R g g X 2 L e B s A A
@ U
> o ~
L Sy w
- Rt W WO O O~ N W W W~ O 0 O O = O
© @ - NN NN NN NN ™M M M ™M m
— K 4D x
S e =9
E o —
© E
«
=
[-d
£
2 a
—
) @
o E 00 WO 00 +— W —t O T 1D O O N 1D ~ < O N~ ©
— N M ™M < OO O OO~ O -1
3 -~ <
E )
o 3
[}
=
vy
Q
]
> .3 -
.—
9 > W
" O Q — < W WO N MM OIS 0O 0N O N a
— S E — - NN NN MM M ™ c
3 QO [ =
MER
)
(8 -
L0
=
v
e
‘o a.
>
er .
E o O NM T WO <N~ NNM OO SR o~
gy~ o o~
— 2
2
-
he)
w a
. 43
ou
- @ 40032130111101121
5 40 —
w @
(=1
nmuﬁhn.lhcﬂnna—nﬂ—ﬂ.‘-a‘-x.!s‘tn._.--l.; . ﬁnah\!ﬁ.\.\\‘h.ﬂ‘- ,‘w..v..’f..f’»‘-.v.w

B S UL . T B SRR

A A

R

o SR WA e S

e TN -"'-'\"'“."-

At m
L.

N
L

C v mA
2D

Je Lt

..
-

"

e N e L e T S




)‘-."r
o adi

IR AR

7k

L 9Py lf
‘('n’?dl

"
r2el

5 a

b

i

7 SIEX

PR AR
. T T Yo
.1‘;';.) Pl 4

R bt

¥
I 4

T e T "i"" o e Ay Ay \A-) gl
R N L Iy vy Y Ml &

w
b
[ Y

”CKWR
\

[}
h
§
.
=

R

§-5
Estimated Observed | Estimated
Model N Errors )

Geometric Poisson 75 34 0.00%56
Non-Homogeneous 15 34 0.0056

Poisson
Geometric Poisson 16 15 0.1:86
Non-Homogeneous 16 15 0.1727

Poisson
Geometric Poisson 49 20 0.0343
Non-Homogeneous 49 20 0.0349

Poisson
Generalized Poisson 21 20 0.1338
Generalized Poisson 28 23 0.2072
IBM Poisson (Modified) 37 23 0.0082
Geometric Poisson 155 73 0.0204
Non-Homogeneous 155 73 0.0206

Poisson

Table 3. Possible Input and Output for the
Database Program [ANGUS]
R S S0 T ST N0V, SRV RV S R Y T Y g e S

e e E e W A B e A e ==



5-6
4.0 REFERENCES
(ANGUS]  Angus, J.E., Bowen, J.B., and VanDenBerg, S.J., Reliabijlitv Mcdel
Demonstration Study, Hughes Aircraft Company, RADC-TR-83-20/,
Volume I, August 1983, pp. 4-2 and 4-26 through 4-31.
[WEISS] Weiss, David M., "A Comparison of Errors in Different Software-

Development Environments", Naval Research Laboratory, Washington,
D.C., Report Number AD-A118-296, 14 July 1982.

R T I R R ATt s Rl s el R L T A | R I e T R R I R I N R O O I L TN PO DI R SO W Ree e

L L I I RV E P P PR Ll P R W e e - |



